A novel strategy for efficient growth of nitrogen-doped graphene (N-graphene) on a large scale from s-triazine molecules is presented. The growth process has been unveiled in situ using time-dependent photoemission. It has been established that a postannealing of N-graphene after gold intercalation causes a conversion of the N environment from pyridinic to graphitic, allowing to obtain more than 80% of all embedded nitrogen in graphitic form, which is essential for the electron doping in graphene. A band gap, a doping level of 300 meV, and a charge-carrier concentration of ∼8×10(12) electrons per cm2, induced by 0.4 atom % of graphitic nitrogen, have been detected by angle-resolved photoemission spectroscopy, which offers great promise for implementation of this system in next generation electronic devices.
Unfortunately, the practical applications of Li-O2 batteries are impeded by poor rechargeability. Here, for the first time we show that superoxide radicals generated at the cathode during discharge react with carbon that contains activated double bonds or aromatics to form epoxy groups and carbonates, which limits the rechargeability of Li-O2 cells. Carbon materials with a low amount of functional groups and defects demonstrate better stability thus keeping the carbon will-o'-the-wisp lit for lithium-air batteries.
The initial oxidation stages of perfect and defective graphitic surfaces exposed to atomic oxygen have been studied with a combined high-resolution photoemission spectroscopy (HR-PES) and density functional theory (DFT) computational approach. The resulting oxygen-containing surface functional groups are identified by analyzing the multicomponent C 1s and O 1s core level spectra that are then interpreted on the basis of DFT calculations. In the initial oxidation stage, epoxy groups are formed on perfect graphene, whereas the preferential adsorption of the O atoms on the vacancies of the defective surfaces results in structures containing pairs of oxygen atoms in ether and carbonyl (semiquinone) configurations. The formation of these functional groups is preceded by metastable structures consisting of single O atoms occupying single C vacancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.