We investigate the dynamics of the sine-Gordon solitons perturbed by spatiotemporal external forces. We prove the existence of internal (shape) modes of sine-Gordon solitons when they are in the presence of inhomogeneous space-dependent external forces, provided some conditions (for these forces) hold. Additional periodic time-dependent forces can sustain oscillations of the soliton width. We show that, in some cases, the internal mode even can become unstable, causing the soliton to decay in an antisoliton and two solitons. In general, in the presence of spatiotemporal forces the soliton behaves as a deformable (non-rigid) object. A soliton moving in an array of inhomogeneities can also present sustained oscillations of its width. There are very important phenomena (like the soliton-antisoliton collisions) where the existence of internal modes plays a crucial role.
Codes to compute mean opacities and radiative accelerations for arbitrary chemical mixtures using the Opacity Project recently revised data have been restructured in a client-server architecture and transcribed as a subroutine library. This implementation increases efficiency in stellar modelling where element stratification due to diffusion processes is depth dependent, and thus requires repeated fast opacity re-estimates. Three user modes are provided to fit different computing environments, namely, a web browser, a local workstation and a distributed grid.
We investigate the dynamics of the sine-Gordon solitons perturbed by
spatiotemporal external forces. We prove the existence of internal (shape)
modes of sine-Gordon solitons when they are in the presence of inhomogeneous
space-dependent external forces, provided some conditions (for these forces)
hold. Additional periodic time-dependent forces can sustain oscillations of the
soliton width. We show that, in some cases, the internal mode even can become
unstable, causing the soliton to decay in an antisoliton and two solitons. In
general, in the presence of spatiotemporal forces the soliton behaves as a
deformable (non-rigid) object. A soliton moving in an array of inhomogeneities
can also present sustained oscillations of its width. There are very important
phenomena (like the soliton-antisoliton collisions) where the existence of
internal modes plays a crucial role. We show that, under some conditions, the
dynamics of the soliton shape modes can be chaotic. A short report of some of
our results has been published in [J. A. Gonzalez et al., Phys. Rev. E, 65
(2002) 065601(R)].Comment: 14 .eps figures.To appear in Chaos, Solitons and Fractal
We investigate the bounce solutions in vacuum decay problems. We show that it is possible to have a stable false vacuum in a potential that is unbounded from below.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.