In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater...Opyran, O—Hwater...Omethoxymethyl and O—Hwater...Npyridazine hydrogen bonds link the molecules into chains along [010]. In addition, weak C—Hdioxolo...Odioxolo hydrogen bonds and a weak C—Hmethoxymethyl...π interaction complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (55.7%), H...C/C...H (14.6%), H...O/O...H (14.5%) and H...N/N...H (9.6%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Electrochemical measurements are also reported.
The title compound, C18H16N4O, consists of a 3,6-bis(pyridin-2-yl)pyridazine moiety linked to a 4-[(prop-2-en-1-yloxy)methyl] group. The pyridine-2-yl rings are oriented at a dihedral angle of 17.34 (4)° and are rotated slightly out of the plane of the pyridazine ring. In the crystal, C—HPyrd...NPyrdz (Pyrd = pyridine and Pyrdz = pyridazine) hydrogen bonds and C—HPrpoxy...π (Prpoxy = prop-2-en-1-yloxy) interactions link the molecules, forming deeply corrugated layers approximately parallel to the bc plane and stacked along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H...H (48.5%), H...C/C...H (26.0%) and H...N/N...H (17.1%) contacts, hydrogen bonding and van der Waals interactions being the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPyrd...NPyrdz hydrogen-bond energy is 64.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
The substituted cyclopentadienyl ring in the title molecule, [Fe(C5H5)(C18H13ClN)], is nearly coplanar with the phenyl-1-(4-chlorophenyl)methanimine substituent, with dihedral angles between the planes of the phenylene ring and the Cp and 4-(chlorophenyl)methanimine units of 7.87 (19) and 9.23 (10)°, respectively. The unsubstituted cyclopentadienyl ring is rotationally disordered, the occupancy ratio for the two orientations refined to a 0.666 (7)/0.334 (7) ratio. In the crystal, the molecules pack in `bilayers' parallel to the ab plane with the ferrocenyl groups on the outer faces and the substituents directed towards the regions between them. The ferrocenyl groups are linked by C—H...π(ring) interactions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (46.1%), H...C/C... H (35.4%) and H...Cl/Cl...H (13.8%) interactions. Thus C—H...π(ring) and van der Waals interactions are the dominant interactions in the crystal packing.
The pyridazine ring deviates slightly from planarity. In the crystal, ribbons consisting of inversion-related chains of molecules extending along the a-axis direction are formed by C—HMthy⋯OCarbx (Mthy = methyl and Carbx = carboxylate) hydrogen bonds. The ribbons are connected into layers parallel to the bc plane by inversion-related C—HBnz⋯π(ring) interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.