We are revisiting the problem of adaptive observer design for systems that are constituted of an Ordinary Differential Equation (ODE), containing a globally Lipschitz function of the state, and a linear Partial Differential Equation (PDE) of a diffusion-reaction heat type. The ODE and PDE are connected in series and both are subject to parametric uncertainties. In addition to nonlinearity and uncertainty, the system complexity also lies in the fact that no sensor can be implemented at the junction point between the ODE and the PDE. In the absence of parameter uncertainty, nonadaptive state observers are available featuring exponential convergence. However, convergence is guaranteed only under the condition that either the Lipschitz coefficient is sufficiently small or the PDE domain length is sufficiently small. To get around this limitation, and also to account for parameter uncertainty, we develop a design that involves two concatenated adaptive observers, covering the two subintervals of the PDE domain. The proposed design employs one extra sensor, providing the measurement of the PDE state at an inner position close to the ODE-PDE junction point.Both observers are shown to be exponentially convergent, under ad-hoc persistent excitation (PE) conditions, with no limitation on the Lipschitz coefficient and domain length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.