Multiple sclerosis (MS) is a T cell-mediated organ-specific inflammatory disease leading to central nervous system (CNS) demyelination. On the basis of results obtained in experimental autoimmune encephalomyelitis (EAE) models, MS treatment by administration of antiinflammatory cytokines such as interleukin 4 (IL-4) is promising but is hampered by the limited access of the cytokines to the CNS and by the pleiotropic effects of systemically administered cytokines. We established a cytokine delivery system within the CNS using non-replicative herpes simplex type 1 (HSV-1) viral vectors engineered with cytokine genes. These vectors injected into the cisterna magna (i.c.) of mice diffuse in all ventricular and subarachnoid spaces and infect with high efficiency the ependymal and leptomeningeal cell layers surrounding these areas, without obvious toxic effects. Heterologous genes contained in the vectors are efficiently transcribed in infected ependymal cells, leading to the production of high amounts of the coded proteins. For example, 4.5 ng of interferon gamma (IFN-gamma) per milliliter is secreted into the cerebrospinal fluid (CSF) up to day 28 postinjection (p.i.) and reaches the CNS parenchyma in bioactive form, as demonstrated by upregulation of MHC class I expression on CNS-resident cells. We then exploited the therapeutic potential of the vectors in EAE mice. An HSV-1-derived vector containing the IL-4 gene was injected i.c. in Biozzi AB/H mice at the time of EAE induction. We found the following in treated mice: (1) delayed EAE onset, (2) a significant decrease in clinical score, (3) a significant decrease in perivascular inflammatory infiltrates and in the number of macrophages infiltrating the CNS parenchyma and the submeningeal spaces, and (4) a reduction in demyelinated areas and axonal loss. Peripheral T cells from IL-4-treated mice were not affected either in their antigen-specific proliferative response or in cytokine secretion pattern. Our results indicate that CNS cytokine delivery with HSV-1 vectors is feasible and might represent an approach for the treatment of demyelinating diseases. Advantages of this approach over systemic cytokine administration are the high cytokine level reached in the CNS, the absence of effects on the peripheral immune system, and the long-lasting cytokine production in the CNS after a single vector administration.
The cysteine protease caspase-1 plays a crucial part in the inflammatory process due to its ability to proteolitically activate proinflammatory cytokine precursors, such as interleukin (IL)-1 and IL-18. Multiple sclerosis is a chronic inflammatory demyelinating disease of the CNS in which the pathogenic process is mainly orchestrated by proinflammatory cytokines.The role of caspase-1 in multiple sclerosis was evaluated by measuring its mRNA levels in peripheral blood mononuclear cells (PBMCs) from seven patients with relapsing-remitting multiple sclerosis every 15 days over a 1 year period. The recorded levels were compared with clinical and MRI evidence of disease activity. Brain MRI was performed monthly in each patient.Caspase-1 mRNA levels were significantly increased in PBMCs from patients with multiple sclerosis compared with healthy controls (p<0.001). In patients with multiple sclerosis, a twofold to threefold increase of caspase-1 mRNA mean level was found in the week preceding an acute attack (p<0.05). The magnitude of caspase-1 mRNA increase correlated with the number of new (p=0.01) but not persisting gadolinium enhancing brain MRI lesions.In conclusion, caspase-1 might be involved in the immune mediated process underlying CNS inflammation and might represent a suitable peripheral immunological marker of disease activity in multiple sclerosis. (J Neurol Neurosurg Psychiatry 1999;67:785-788)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.