SummaryWe have explored the importance of the phyllosphere microbiome in plant resistance in the cuticle mutants bdg (BODYGUARD) or lacs2.3 (LONG CHAIN FATTY ACID SYNTHASE 2) that are strongly resistant to the fungal pathogen Botrytis cinerea.The study includes infection of plants under sterile conditions, 16S ribosomal DNA sequencing of the phyllosphere microbiome, and isolation and high coverage sequencing of bacteria from the phyllosphere.When inoculated under sterile conditions bdg became as susceptible as wild-type (WT) plants whereas lacs2.3 mutants retained the resistance. Adding washes of its phyllosphere microbiome could restore the resistance of bdg mutants, whereas the resistance of lacs2.3 results from endogenous mechanisms. The phyllosphere microbiome showed distinct populations in WT plants compared to cuticle mutants. One species identified as Pseudomonas sp isolated from the microbiome of bdg provided resistance to B. cinerea on Arabidopsis thaliana as well as on apple fruits. No direct activity was observed against B. cinerea and the action of the bacterium required the plant.Thus, microbes present on the plant surface contribute to the resistance to B. cinerea. These results open new perspectives on the function of the leaf microbiome in the protection of plants.
Summary
In legumes, phytoglobins (Phytogbs) are known to regulate nitric oxide (NO) during early phase of the nitrogen‐fixing symbiosis and to buffer oxygen in functioning nodules. However, their expression profile and respective role in NO control at each stage of the symbiosis remain little‐known.
We first surveyed the Phytogb genes occurring in Medicago truncatula genome. We analyzed their expression pattern and NO production from inoculation with Sinorhizobium meliloti up to 8 wk post‐inoculation. Finally, using overexpression and silencing strategy, we addressed the role of the Phytogb1.1‐NO couple in the symbiosis.
Three peaks of Phytogb expression and NO production were detected during the symbiotic process. NO upregulates Phytogbs1 expression and downregulates Lbs and Phytogbs3 ones. Phytogb1.1 silencing and overexpression experiments reveal that Phytogb1.1‐NO couple controls the progression of the symbiosis: high NO concentration promotes defense responses and nodular organogenesis, whereas low NO promotes the infection process and nodular development. Both NO excess and deficiency provoke a 30% inhibition of nodule establishment. In mature nodules, Phytogb1.1 regulates NO to limit its toxic effects while allowing the functioning of Phytogb‐NO respiration to maintain the energetic state.
This work highlights the regulatory role played by Phytogb1.1–NO couple in the successive stages of symbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.