Correct identification of geologic discontinuities, such as faults, pinch-outs, and small-size scattering objects, is a primary challenge of the seismic method. Seismic response from these objects is encoded in diffractions. Our method images local heterogeneities of the subsurface using diffracted seismic events. The method is based on coherent summation of diffracted waves arising in media that include interface discontinuities and local velocity heterogeneities. This is done using a correlation procedure that coherently focuses diffraction energy on a seismic section by flattening diffraction events using a new local-time-correction formula to parameterize diffraction traveltime curves. This time correction, which is based on the multifocusing method, depends on two parameters: the emergent angle and the radius of curvature of the diffracted wavefront. These parameters are estimated directly from prestack seismic traces. The diffraction multifocusing stack (DMFS) can separate diffracted and reflected energy on a stacked section by focusing diffractions to the diffraction location and defocusing the reflection energy over a large area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.