The Planck distribution of photons emitted by a black body led to the development of quantum theory. An analogous distribution of phonons should exist in a Bose-Einstein condensate. We observe this Planck distribution of thermal phonons in a 3D condensate. This observation provides an important confirmation of the basic nature of the condensate's quantized excitations.In contrast to the bunching effect, the density fluctuations are seen to increase with increasing temperature. This is due to the non-conservation of the number of phonons. In the case of rapid cooling, the phonon temperature is out of equilibrium with the surrounding thermal cloud. In this case, a Bose-Einstein condensate is not as cold as previously thought. These measurements are enabled by our in situ -space technique.Quantum theory was first discovered by considering the spectrum of light emitted by a black body [1]. The correct spectrum was only obtained when it was realized that light is quantized into photons. The population of these photons is given by the Planck distribution, which increases with the temperature of the black body. A Planck distribution of phonons was then used to explain the specific heat of crystals. This was an important early success of quantum theory. It is also believed that a Planck
We measure the time oscillations of a freely evolving standing wave of phonons in a Bose-Einstein condensate. We present the technique of short Bragg pulses, which stimulates the standing wave. The subsequent oscillations are observed in situ. The frequency of the oscillations gives the dispersion relation, the amplitude gives the static structure factor, and the decay gives the dephasing time. The new technique gives orders of magnitude more sensitivity than Bragg spectroscopy, allowing for the observation of deviations from the local density approximation. Specifically, it is seen that the phonons undergo a transition from three dimensions to one dimension, when their wavelength becomes longer than the transverse radius of the condensate. The one-dimensional regime contains an inflection point in the dispersion relation, a decrease in the superfluid critical velocity, a minimum in the group velocity, and an increase in the lifetime of the standing wave oscillations.
By a novel reciprocal space analysis of the measurement, we report a calibrated in situ observation of the bunching effect in a 3D ultracold gas. The calibrated measurement with no free parameters confirms the role of the exchange symmetry and the Hanbury Brown-Twiss effect in the bunching. Also, the enhanced fluctuations of the bunching effect give a quantitative measure of the increased isothermal compressibility. We use 2D images to probe the 3D gas, using the same principle by which computerized tomography reconstructs a 3D image of a body. The powerful reciprocal space technique presented is applicable to systems with one, two, or three dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.