The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given. (C) 2011 Elsevier B.V. All rights reserved
The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number-violating process: ^{130}Te neutrinoless double-beta decay. Examining a total TeO_{2} exposure of 86.3 kg yr, characterized by an effective energy resolution of (7.7±0.5) keV FWHM and a background in the region of interest of (0.014±0.002) counts/(keV kg yr), we find no evidence for neutrinoless double-beta decay. Including systematic uncertainties, we place a lower limit on the decay half-life of T_{1/2}^{0ν}(^{130}Te)>1.3×10^{25} yr (90% C.L.); the median statistical sensitivity of this search is 7.0×10^{24} yr. Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find T_{1/2}^{0ν}(^{130}Te)>1.5×10^{25} yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find m_{ββ}<(110-520) meV, where the range reflects the nuclear matrix element estimates employed.
The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of 130 Te with an array of 988 TeO 2 bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the 130 Te decay half-life of 9 × 10 25 years after 5 years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10 −2 counts/keV/kg/year. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of 130 Te is expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.