Corresponding author exist scenarios in which the effective Majorana mass of the electron neutrino could be larger than 0.05 eV. Recent developments in detector technology make the observation of 0 νββ decay at this scale now feasible. For recent comprehensive experimental and theoretical reviews see [4][5][6]. Optimism that a direct observation of 0 νββ decay is possible was greatly enhanced by the observation and measurement of the oscillations of atmospheric neutrinos [7], the confirmation by SuperKamiokande [8] of the deficit of 8 B neutrinos observed by the chlorine experiment [9], the observed deficit of p-p neutrinos by SAGE [10] and GALEX [11], and the results of the SNO experiment [12] that clearly showed that the total flux of 8 B neutrinos from the sun predicted by Bahcall and his coworkers [13] is correct. Finally, the data from the KamLAND
The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of 130 Te with an array of 988 TeO 2 bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the 130 Te decay half-life of 9 × 10 25 years after 5 years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10 −2 counts/keV/kg/year. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of 130 Te is expected.
We report on the measurement of the twoneutrino double-beta decay half-life of 130 Te with the CUORE-0 detector. From an exposure of 33.4 kg year of TeO 2 , the half-life is determined to be T 2ν 1/2 = [8.2 ± 0.2 (stat.) ± 0.6 (syst.)] × 10 20 year. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the 130 Te neutrinoless double-beta decay region of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.