This paper considers functional integration in the brain from a computational perspective. We ask what sort of neuronal message passing is mandated by active inference—and what implications this has for context-sensitive connectivity at microscopic and macroscopic levels. In particular, we formulate neuronal processing as belief propagation under deep generative models. Crucially, these models can entertain both discrete and continuous states, leading to distinct schemes for belief updating that play out on the same (neuronal) architecture. Technically, we use Forney (normal) factor graphs to elucidate the requisite message passing in terms of its form and scheduling. To accommodate mixed generative models (of discrete and continuous states), one also has to consider link nodes or factors that enable discrete and continuous representations to talk to each other. When mapping the implicit computational architecture onto neuronal connectivity, several interesting features emerge. For example, Bayesian model averaging and comparison, which link discrete and continuous states, may be implemented in thalamocortical loops. These and other considerations speak to a computational connectome that is inherently state dependent and self-organizing in ways that yield to a principled (variational) account. We conclude with simulations of reading that illustrate the implicit neuronal message passing, with a special focus on how discrete (semantic) representations inform, and are informed by, continuous (visual) sampling of the sensorium.Author SummaryThis paper considers functional integration in the brain from a computational perspective. We ask what sort of neuronal message passing is mandated by active inference—and what implications this has for context-sensitive connectivity at microscopic and macroscopic levels. In particular, we formulate neuronal processing as belief propagation under deep generative models that can entertain both discrete and continuous states. This leads to distinct schemes for belief updating that play out on the same (neuronal) architecture. Technically, we use Forney (normal) factor graphs to characterize the requisite message passing, and link this formal characterization to canonical microcircuits and extrinsic connectivity in the brain.
Active inference is a corollary of the Free Energy Principle that prescribes how self-organizing biological agents interact with their environment. The study of active inference processes relies on the definition of a generative probabilistic model and a description of how a free energy functional is minimized by neuronal message passing under that model. This paper presents a tutorial introduction to specifying active inference processes by Forney-style factor graphs (FFG). The FFG framework provides both an insightful representation of the probabilistic model and a biologically plausible inference scheme that, in principle, can be automatically executed in a computer simulation. As an illustrative example, we present an FFG for a deep temporal active inference process. The graph clearly shows how policy selection by expected free energy minimization results from free energy minimization per se, in an appropriate generative policy model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.