Abstract-A simple field analysis was developed for helical slowwave structure symmetrically supported by rectangular shaped discrete dielectric support rods partially embedded in the metal segments projecting radially inward from a metal envelope for wideband traveling-wave tubes. The tape helix model was used for the prediction of the dispersion relation and the interaction impedance characteristics. The closed form simplified expressions are obtained by combining the tape model dispersion relation for free-space helix and the dielectric loading factor obtained for the loaded helix in the sheath model. The dispersion characteristics and the interaction impedance characteristics obtained by the present analysis were compared with other more involved analytical method reported in the literature for the similar helical slow-wave structure and found to be in close agreement. The present analytical results were also validated against HFSS simulation with an agreement within 5% for both the characteristics for a wide range of structure parameters. An appropriate choice of the structure parameters (helix thickness, height of the metal segments, material of the dielectric support rods, wedge segments angle and helix pitch) provided the phase velocity varying with frequency corresponding to flat to negative structure dispersion with an appreciable interaction impedance values over a wide frequency band. The present analysis enjoys simplicity and establishes the potential of the proposed helical interaction structure for its employment in wideband traveling-wave tubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.