The vanilloid receptor-1 (VR1) is a heat-gated ion channel that is responsible for the burning sensation elicited by capsaicin. A similar sensation is reported by patients with esophagitis when they consume alcoholic beverages or are administered alcohol by injection as a medical treatment. We report here that ethanol activates primary sensory neurons, resulting in neuropeptide release or plasma extravasation in the esophagus, spinal cord or skin. Sensory neurons from trigeminal or dorsal root ganglia as well as VR1-expressing HEK293 cells responded to ethanol in a concentration-dependent and capsazepine-sensitive fashion. Ethanol potentiated the response of VR1 to capsaicin, protons and heat and lowered the threshold for heat activation of VR1 from approximately 42 degrees C to approximately 34 degrees C. This provides a likely mechanistic explanation for the ethanol-induced sensory responses that occur at body temperature and for the sensitivity of inflamed tissues to ethanol, such as might be found in esophagitis, neuralgia or wounds.
Recently, the cannabinoid (CB) receptor agonist anandamide (AEA) has been shown to excite perivascular terminals of primary sensory neurons via activation of the vanilloid receptor-1 (VR-1). To determine whether AEA stimulates central terminals of these neurons, via VR-1 activation, we studied the release of calcitonin gene-related peptide (CGRP)-and substance P (SP)-like immunoreactivities (LI) from slices of rat dorsal spinal cord. Mobilization of Ca 2ϩ in rat dorsal root ganglion (DRG) neurons in culture was also studied. AEA (0.1-10 M) increased the outflow of CGRP-LI and SP-LI from slices of the rat dorsal spinal cord in a Ca 2ϩ -dependent manner and increased [Ca 2ϩ ] i in capsaicin-sensitive cultured DRG neurons. Both effects of AEA were abolished by capsaicin pretreatment and by the VR-1 antagonist capsazepine but not affected by the CB receptor antagonists AM281 or AM630. Both neuropeptide release and Ca 2ϩ mobilization induced by electrical field stimulation (EFS) were inhibited by a low concentration of AEA (10 nM). Inhibition by AEA of EFS-induced responses was reversed by AM281 and AM630, but was not affected by capsazepine. Results indicate that stimulation of VR-1 with high concentrations of AEA excites central terminals of capsaicin-sensitive DRG neurons, thus causing neuropeptide release in the dorsal spinal cord. This novel activity opposes the CB receptor-mediated inhibitory action of low concentrations AEA. However, only if large amounts of endogenous AEA could be produced at the level of the dorsal spinal cord, they may not inhibit, but rather activate, nociceptive sensory neurons.
Background and Purpose-Atherosclerosis occurs later and is less extensive in intracranial arteries than in extracranial arteries. However, the mechanisms responsible are poorly understood. A previous study has suggested a better antioxidant protection of intracranial arteries. Methods-To assess the influence of age on arterial activity of antioxidant enzymes and atherogenesis, we compared intracranial and extracranial arteries of humans of different ages who retrospectively lacked confounding classic risk factors (48 premature fetuses aged 6.4Ϯ0.8 months [meanϮSD], 58 children aged 7.9Ϯ3.8 years, 42 adults aged 42.5Ϯ5.1 years, and 40 elderly subjects aged 71.8Ϯ3.4 years; all males). Lesions were quantified by computer-assisted imaging analysis of sections of the middle cerebral and basilar arteries, the left anterior descending coronary artery, the common carotid artery, and the abdominal aorta. Macrophages, apolipoprotein B, oxidized LDL, and matrix metalloproteinase-9 in lesions were determined by immunocytochemistry. The effect of aging on atherogenesis was then compared with that on the activity of 4 antioxidant enzymes in the arterial wall. Results-Atherosclerosis was 6-to 19-fold greater (PϽ0.01) in extracranial arteries than in intracranial arteries, and it increased linearly with age. Intracranial arteries showed significantly greater antioxidant enzyme activities than did extracranial arteries. However, the antioxidant protection of intracranial arteries decreased significantly in older age, coinciding with a marked acceleration of atherogenesis. An increase in matrix metalloproteinase-9 protein expression and in gelatinolytic activity consistent with the degree of intracranial atherosclerosis was also observed. Conclusions-These results suggest that a greater activity of antioxidant enzymes in intracranial arteries may contribute to their greater resistance to atherogenesis and that with increasing age intracranial arteries respond with accelerated atherogenesis when their antioxidant protection decreases relatively more than that of extracranial arteries.
Background and Purpose-Calcium-channel blockers (CCBs) reduce systolic blood pressure and stroke-related mortality in stroke-prone spontaneously hypertensive rats (SPSHR). Brain ischemia is associated with loss of intracellular antioxidants. Increased formation of oxygen radicals and oxidation of LDL may enhance arterial vasoconstriction by various mechanisms. CCBs that also exert antioxidative properties in vitro may therefore be particularly useful. To investigate such antioxidant effects in vivo, we determined several parameters of LDL oxidation in SPSHR treated with two 1,4-dihydropyridine-type (1,4-DHP) CCBs of different lipophilic properties and compared them with antioxidanttreated and untreated controls. We also tested whether these drugs decrease the formation of oxidation-specific epitopes in arteries. Methods-Five groups of 9 to 14 SPSHR each (aged 8 weeks) were treated with 80 mg/kg body wt per day nifedipine, 1 mg or 0.3 mg/kg body wt per day lacidipine, vitamin E (100 IU/d), or carrier for 5 weeks. A group of Wistar-Kyoto rats was used as normotensive control. Plasma samples were taken, and LDL was isolated by ultracentrifugation. Then LDL was exposed to oxygen radicals generated by xanthine/xanthine oxidase reaction (2 mmol/L xanthineϩ100 mU/mL xanthine oxidase), and several parameters of oxidation were determined. The presence of native apolipoprotein B and oxidation-specific epitopes in the carotid and middle cerebral arteries was determined immunocytochemically. Results-1,4-DHP CCBs completely prevented mortality. Normotensive Wistar-Kyoto rats showed less oxidation than control SPSHR. Plasma lipoperoxide levels were 0.87Ϯ0.27 mol/L in control SPSHR, 0.69Ϯ0.19 and 0.63Ϯ0.20 mol/L in the groups treated with 0.3 and 1 mg lacidipine, respectively, and 0.68Ϯ0.23 mol/L in nifedipine-treated animals (PϽ0.05 versus control SPSHR for all values). Both CCBs significantly decreased formation of conjugated dienes and prolonged the lag time in LDL exposed to oxygen radicals. Similarly, lipoperoxides and malondialdehyde were significantly reduced (PϽ0.05). Reduced relative electrophoretic mobility and increased trinitrobenzenesulfonic acid reactivity of LDL from treated rats (PϽ0.01) also indicated that fewer lysine residues of apolipoprotein B were oxidatively modified in the presence of 1,4-DHP CCBs. Finally, these drugs reduced the intimal presence of apolipoprotein B and oxidized LDL (oxidation-specific epitopes) in carotid and middle cerebral arteries. Conclusions-In the SPSHR model, 1,4-DHP CCBs reduce plasma and LDL oxidation and formation of oxidation-specific epitopes and prolong survival independently of blood pressure modifications. Our results support the concept that the in vivo protective effect of these drugs on cerebral ischemia and stroke may in part result from inhibition of oxidative processes. (Stroke. 1999;30:1907-1915
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.