Modern control and measurement systems are equipped with interfaces to operate in local area networks and are typically intended to perform complicated data processing and control algorithms. The authors propose a digital system for rapid prototyping of target application devices. The concept solution separates the processing and control section from the hardware interface and user interface section. Both sections constitute independent ARM-based controllers interconnected via a direct USB link. Popular libraries can be used and low-level procedures developed, which enhances the system’s economic viability. A test unit developed for the purpose of the study was built around a SoC ARM7 microsystem and an off-the-shelf palmtop device. It demonstrated a continuous data stream transfer capability up to 150 kB per second, which was sufficient to monitor the performance of an electricity line.
Measurements of medium and high voltages in a power grid are normally performed with large and bulky voltage transformers or capacitive dividers. Besides installation problems, these devices operate in a relatively narrow frequency band, which limits their usability in modern systems that are saturated with power electronic devices. A sensor that can be installed directly on a wire and can operate without a galvanic connection to the ground may be used as an alternative voltage measurement device. This type of voltage sensor can complement current sensors installed on a wire, forming a complete power acquisition system. This paper presents such a sensor. Our sensor is built using two dielectric elements with different permeability coefficients. A finite element method simulation is used to estimate the parameters of a constructed sensor. Besides simulations, a laboratory model of a sensor was built and tested in a medium-voltage substation. Our results provide a proof of concept for the presented sensor. Some errors in voltage reconstruction have been traced to an oversimplified data acquisition and transmission system, which has to be improved during the further development of the sensor.
One of the greatest challenges that Power Quality specialist are facing now a days is the application of correct method to identify the source of disturbance. This paper reports on the identification of harmonic source in power system considering different case scenarios along with simulation and laboratory test result.
Constantly growing distributed energy generation based on renewable sources creates a number of new challenges for electrical power system operation. One of the challenges is islanding detection. Unintentional islanding, which can cause health and safety hazards for the personnel, is currently being experienced by a growing number of consumers/prosumers especially in the case of photovoltaic inverters. This work presents a new islanding detection method based on synchrophasor measurements. The proposed method works in either a passive or hybrid mode. In a passive mode, a single phasor measurement unit (PMU) in the island region is used. In a hybrid mode, one PMU in the island and another one outside the island are exploited. The proposed method was verified in conducted laboratory tests that confirmed the applicability of PMUs data for effective detection and monitoring of unintentional islanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.