Due to the low cross-section to perform the reaction, muons are the earth's most common detectable cosmic rays. Like the other particles produced by the collision of energetic particles, muons are unstable and have a lifetime distribution spectrum. This paper measures the energy and lifetime of the muon cosmic radiation using a digital spectroscopy system. In the presented method, all the nuclear electronics modules are omitted, and the process of forming the signals is recorded in the software. To perform this measurement, radiation events were detected in coincidence mode using two NaI (Tl) detectors installed at the angle of 90 ° concerning the horizon line. The signals recorded in the pre-amplifier of the two detectors were sampled directly using a waveform digitizer and, after recording, stored as the list mode data. By programming on the data list, about 10 5 muon events were detected over two weeks. Their lifetime is extracted by measuring the time interval between events detected as muon radiation. By fitting the exponential function to the experimental data, the muon lifetime is determined to be 2.03 µs. The results show that this study's obtained lifetime for muon is consistent with the other experimental data. The transition from analog to digital nuclear electronics in muon radiation spectroscopy provides simplicity, high reliability, small size, light weight of the acquisition system, and the possibility to be installed on the research satellites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.