Abstract-Typical methods of quantum/reversible synthesis are based on using the binary character of quantum computing. However, multi-valued logic is a promising choice for future computer technologies, given a set of advantages when comparing to binary circuits. In this work, we have developed a genetic algorithm-based synthesis of ternary reversible circuits using Muthukrishnan-Stroud gates. The method for chromosomes coding that we present, as well as a judicious choice of algorithm parameters, allowed obtaining circuits for half-adder and full adder which are better than other published methods in terms of cost, delay times and amount of input ancillary bits. A structure of the circuits is analyzed in details, based on their decomposition.Index Terms-Multiple-valued logic, ternary logic, ternary reversible adder, reversible logic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.