Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes.
To satisfy the demand for more high energy, high brightness x-ray sources at the Advanced Light Source (ALS), a plan is in place to replace three 1.3 Tesla normal conducting bending magnets with three 5 Tesla superconducting magnets (Superbends) in the year 2001. This will result in 12 new x-ray beam lines (four from each superbend) for users. The Superbend sources will be an order of magnitude higher in x-ray brightness and flux at 12 keV than the conventional 1.3 Tesla bending magnets. The Superbend project is a major upgrade to the ALS where the 3 superconducting magnets will be an integral part of the machine lattice. In this paper we discuss the current status of the Superbend projectas well as precomissioning studies prior to the 2001 installation for users.
The Advanced Light Source (ALS) is a third generation synchrotron light source located at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand at the ALS for additional high brightness hard x-ray beamlines in the 7 to 40 keV range. In response to that demand, the ALS storage ring was modified in
Spin‐coating is extensively used in the lab‐based manufacture of organic solar cells, including most of the record‐setting cells. Aram Amassian and co‐workers report the first direct observation of photoactive layer formation as it occurs during spin‐coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for successful transfer to printing processes and scale‐up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.