Deuteron NMR spectra and spin-lattice relaxation were measured for D2O confined in NaX, NaY, and DY faujasites with various loadings at temperatures ranging from 200 to 310 K with the aim to study molecular mobility of confined water. Hysteresis of spin-lattice relaxation was observed for both DY and NaY(2.4) samples at 500% loading (280 water molecules per unit cell) in a heating-cooling cycle between 264.5 and 277.7 K. The hysteresis is most likely reflecting formation and decomposition of water clusters at different temperature. Spin-lattice relaxation rates obtained from the experiment are consistent with a picture of the fast magnetization exchange between two dynamically different deuteron populations. The observed relaxation behavior as a function of temperature and loading is most likely an effect of interplay between translational and rotational diffusion. Translational diffusion of water molecules is found to be related to the strength of the electrostatic interaction of water oxygen atoms to faujasite sodium cations, whereas water molecule reorientations seem to depend on the strength of hydrogen bonding to faujasite oxygen atoms and the strength of hydrogen bonds between water molecules, at outer and inner positions in water clusters, respectively.
Deuteron NMR spectra were measured for D2O confined in NaX, NaY, and DY faujasites with various D2O loadings at temperatures ranging from T = 70 K to T = 200 K with the aim to study the molecular mobility of confined water as a function of Si/Al ratio and loading. The recorded spectra were fitted with linear combinations of representative spectral components. At low loading, with the number of water molecules per unit cell close to the abundance of sodium cations, a component related to π-jumps of water deuterons about the 2-fold symmetry axis dominated. For loadings at levels 3 times and 5 times higher than the initial loading level, Pake dublets due to rigid water deuterons dominated the recorded spectra. A set of the quadrupole coupling constant values of localized water deuterons was derived from the analysis of the Pake dublets. Their values were attributed to deuteron positions corresponding to the locations at oxygen atoms in the faujasite framework and locations within hydrogen-bonded water clusters inside faujasite cages. The contributions of the different spectral components were observed to change with increasing temperature according to the Arrhenius law with a characteristic dynamic crossover point at T = 165 K. Below T = 165 K a spectral component was observed whose contribution changed with temperature, yielding the activation energy of about 2 kJ/mol, characteristic for jumps between inversion-related water positions in clusters.
Methods of spatiotemporal characterization of nonequilibrated polymer based matrices are still immature and imperfect. The purpose of the study was to develop the methodology for the spatiotemporal characterization of water transport and properties in alginate tablets under hydration. The regions of low water content were spatially and temporally sampled using Karl Fisher and Differential Scanning Callorimetry (spatial distribution of freezing/nonfreezing water) with spatial resolution of 1 mm. In the regions of high water content, where sampling was infeasible due to gel/sol consistency, magnetic resonance imaging (MRI) enabled characterization with an order of magnitude higher spatial resolution. The minimally hydrated layer (MHL), infiltration layer (IL) and fully hydrated layer (FHL) were identified in the unilaterally hydrated matrices. The MHL gained water from the first hour of incubation (5–10% w/w) and at 4 h total water content was 29–39% with nonfreezing pool of 28–29%. The water content in the IL was 45–47% and at 4 h it reached ~50% with the nonfreezing pool of 28% and T2 relaxation time < 10 ms. The FHL consisted of gel and sol layer with water content of 85–86% with a nonfreezing pool of 11% at 4 h and T2 in the range 20–200 ms. Hybrid destructive/nondestructive analysis of alginate matrices under hydration was proposed. It allowed assessing the temporal changes of water distribution, its mobility and interaction with matrices in identified layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.