Adipokines are currently widely studied cellular signaling proteins produced by adipose tissue and involved in various processes, including inflammation; energy and appetite modulation; lipid and glucose metabolism; insulin sensitivity; endothelial cell functioning; angiogenesis; the regulation of blood pressure; and hemostasis. The current review attempted to highlight the key functions of adipokines in the inflammatory mechanisms of obesity, its complications, and its associated diseases. An extensive search for materials on the role of adipokines in the pathogenesis of obesity was conducted online using the PubMed and Scopus databases until October 2022.
A wide variety of cell populations, including both immune and endothelial cells, participate in the pathogenesis of atherosclerosis. Among these groups, macrophages deserve special attention because different populations of them can have completely different effects on atherogenesis and inflammation in atherosclerosis. In the current review, the significance of different phenotypes of macrophages in the progression or regression of atherosclerosis will be considered, including their ability to become the foam cells and the consequences of this event, as well as their ability to create a pro-inflammatory or anti-inflammatory medium at the site of atherosclerotic lesions as a result of cytokine production. In addition, several therapeutic strategies directed to the modulation of macrophage activity, which can serve as useful ideas for future drug developments, will be considered.
Mitochondrial dysfunction is associated with a wide range of chronic human disorders, including atherosclerosis and diabetes mellitus. Mitochondria are dynamic organelles that undergo constant turnover in living cells. Through the processes of mitochondrial fission and fusion, a functional population of mitochondria is maintained, that responds to the energy needs of the cell. Damaged or excessive mitochondria are degraded by mitophagy, a specialized type of autophagy. These processes are orchestrated by a number of proteins and genes, and are tightly regulated. When one or several of these processes are affected, it can lead to the accumulation of dysfunctional mitochondria, deficient energy production, increased oxidative stress and cell death—features that are described in many human disorders. While severe mitochondrial dysfunction is known to cause specific and mitochondrial disorders in humans, progressing damage of the mitochondria is also observed in a wide range of other chronic diseases, including cancer and atherosclerosis, and appears to play an important role in disease development. Therefore, correction of mitochondrial dynamics can help in developing new therapies for the treatment of these conditions. In this review, we summarize the recent knowledge on the processes of mitochondrial turnover and the proteins and genes involved in it. We provide a list of known mutations that affect mitochondrial function, and discuss the emerging therapeutic approaches.
Atherosclerosis is the most common cardiovascular disease and is the number one cause of death worldwide. Today, atherosclerosis is a multifactorial chronic inflammatory disease with an autoimmune component, accompanied by the accumulation of cholesterol in the vessel wall and the formation of atherosclerotic plaques, endothelial dysfunction, and chronic inflammation. In the process of accumulation of atherogenic lipids, cells of the immune system, such as monocytes, macrophages, dendritic cells, etc., play an important role, producing and/or activating the production of various cytokines—interferons, interleukins, chemokines. In this review, we have tried to summarize the most important cytokines involved in the processes of atherogenesis.
Cardiovascular diseases (CVD) and, in particular, atherosclerosis, remain the main cause of death in the world today. Unfortunately, in most cases, CVD therapy begins after the onset of clinical symptoms and is aimed at eliminating them. In this regard, early pathogenetic therapy for CVD remains an urgent problem in modern science and healthcare. Cell therapy, aimed at eliminating tissue damage underlying the pathogenesis of some pathologies, including CVD, by replacing it with various cells, is of the greatest interest. Currently, cell therapy is the most actively developed and potentially the most effective treatment strategy for CVD associated with atherosclerosis. However, this type of therapy has some limitations. In this review, we have tried to summarize the main targets of cell therapy for CVD and atherosclerosis in particular based on the analysis using the PubMed and Scopus databases up to May 2023.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.