By recursively solving the underlying Schrödinger equation, we set up an efficient systematic approach for deriving analytic expressions for discretized effective actions. With this we obtain discrete short-time propagators for both one and many particles in arbitrary dimension to orders which have not been accessible before. They can be used to substantially speed up numerical Monte Carlo calculations of path integrals, as well as for setting up a new analytical approximation scheme for energy spectra, density of states, and other statistical properties of quantum systems.
In this paper we present new versions of previously published numerical programs for solving the dipolar Gross-Pitaevskii (GP) equation including the contact interaction in two and three spatial dimensions in imaginary and in real time, yielding both stationary and non-stationary solutions. New versions of programs were developed using CUDA toolkit and can make use of Nvidia GPU devices. The algorithm used is the same split-step semi-implicit Crank-Nicolson method as in the previous version (R. Kishor Kumar et al. (2015)) [1], which is here implemented as a series of CUDA kernels that compute the solution on the GPU. In addition, the Fast Fourier Transform (FFT) library used in the previous version is replaced by cuFFT library, which works on CUDA-enabled GPUs. We present speedup test results obtained using new versions of programs and demonstrate an average speedup of 12 to 25, depending on the program and input size.
We present a new analytical method that systematically improves the convergence of path integrals of a generic N-fold discretized theory. Using it we calculate the effective actions S(p) for p< or =9, which lead to the same continuum amplitudes as the starting action, but that converge to that continuum limit as 1/N(p). We checked this derived speedup in convergence by performing Monte Carlo simulations on several different models.
We analyze the method for calculation of properties of nonrelativistic quantum systems based on exact diagonalization of space-discretized short-time evolution operators. In this paper we present a detailed analysis of the errors associated with space discretization. Approaches using direct diagonalization of real-space discretized Hamiltonians lead to polynomial errors in discretization spacing Delta . Here we show that the method based on the diagonalization of the short-time evolution operators leads to substantially smaller discretization errors, vanishing exponentially with 1/Delta(2). As a result, the presented calculation scheme is particularly well suited for numerical studies of few-body quantum systems. The analytically derived discretization errors estimates are numerically shown to hold for several models. In the follow up paper [I. Vidanović, A. Bogojević, A. Balaz, and A. Belić, Phys. Rev. E 80, 066706 (2009)] we present and analyze substantial improvements that result from the merger of this approach with the recently introduced effective-action scheme for high-precision calculation of short-time propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.