Two series of analogues of riluzole, a blocker of excitatory amino acid mediated neurotransmission, have been synthesized: monosubstituted 2-benzothiazolamines and 3-substituted derivatives. Of all the compounds prepared in the first series, only 2-benzothiazolamines bearing alkyl, polyfluoroalkyl, or polyfluoroalkoxy substituents in the 6-position showed potent anticonvulsant activity against administration of glutamic acid in rats. The most active compounds displaying in vivo "antiglutamate" activity were the 6-OCF(3) (riluzole), 6-OCF(2)CF(3), 6-CF(3), and 6-CF(2)CF(3) substituted derivatives with ED(50) values between 2.5 and 3.2 mg/kg i.p. Among the second series of variously substituted benzothiazolines, compounds as active as riluzole or up to 3 times more potent were identified in two series: benzothiazolines bearing a beta-dialkylaminoethyl moiety and compounds with an alkylthioalkyl chain and their corresponding sulfoxides and sulfones. The most potent derivatives were 2-imino-3-(2-methylthio)- and 2-imino-3-(2-methylsulfinyl)-ethyl-6-trifluoromethoxybenzothiazolines (61 and 64, ED(50) = 1.0 and 1.1 mg/kg i.p., respectively). In addition, intraperitoneal administration of some of the best benzothiazolines protected mice from mortality produced by hypobaric hypoxia.
Although several adaptive mechanisms have been identified that mask the existence of Parkinson's disease and delay the onset and aggravation of motor symptoms, the timescale and implications of this compensatory process remain an enigma. In order to examine: (i) the nature of the dopaminergic adaptive mechanisms that come into action; (ii) their sequential activation in relation to the severity of degeneration; and (iii) their efficacy with regard to the maintenance of a normal level of basal ganglia activity, we analysed the brains of mice treated daily with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP, 4 mg/kg, i.p.) and killed at 5-day intervals from day 0 (D0) to D20. Our results demonstrate the sequential activation of two compensatory mechanisms: (i) an increase in striatal tyrosine hydroxylase (TH) protein content attested by the persistence of TH immunolabelling up to D15, contrasting with the decrease observed in both the number of nigral TH-immunoreactive neurons (-70.2%) and striatal dopamine content (-38.4%); (ii) a downregulation of DA uptake in surviving terminals at D20 (73.4% of nigral degeneration). At this point, the failure of adaptive mechanisms to maintain striatal dopaminergic homeostasis is also illustrated by an increase in the cytochrome oxidase activity of substantia nigra pars reticulata, a marker of neuronal function. It has been postulated that an increase in dopamine release per pulse could constitute an adaptive mechanism. The data we present from our MPTP mice model infirm this hypothesis. This study explores the link between the degree of nigral degeneration and the sequential activation of dopaminergic compensatory mechanisms in the nigrostriatal pathway and, in so doing, proposes a rethink of the paradigm applied to these mechanisms.
This study examined high affinity Na+-dependent uptake of glutamate in synaptosomal preparations from spinal cord in mice that express a dominant mutation of human copper/zinc superoxide dismutase (SOD1) and represent an animal model of amyotrophic lateral sclerosis (ALS). Their muscle strength was also monitored by a grip traction test throughout their lifespan. The high affinity Na+-dependent uptake of [3H]glutamate was decreased between 120 and 150 days of age. A marked and significant decrease in Vmax (-40.2%; p < 0.001) on whole spinal cord synaptosomes was observed at 150 days, with no change in Km. This significant decrease was reached a week before the animals died (157.2 +/- 2.2 days) and corresponded to a considerable fall in muscle strength (25% loss between 120 and 140 days, p < 0.001). The FALS mouse model therefore reproduces the decrease in glutamate uptake reported in humans suffering from sporadic or familial ALS. These results are discussed in terms of a possible tardive involvement of glutamate uptake deficiency in human ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.