1 The aim of this study was to investigate the e ect of N-(3-(aminomethyl)benzyl)acetamidine (1400W), a selective inhibitor of inducible calcium-independent nitric oxide synthase (iNOS), on the functional and histopathological outcomes of experimental transient focal cerebral ischaemia in rats. 2 Transient ischaemia was produced by the occlusion for 2 h of both the left middle cerebral artery and common carotid artery. Treatments with 1400W (20 mg kg 71 ) or vehicle were started 18 h after occlusion of the arteries and consisted in seven subcutaneous injections at 8 h interval. Ischaemic outcomes and NOS activities (constitutive and calcium-independent NOS) were evaluated 3 days after ischaemia. 3 1400W signi®cantly reduced ischaemic lesion volume by 31%, and attenuated weight loss and neurological dysfunction. 4 1400W attenuated the calcium-independent NOS activity in the infarct by 36% without a ecting the constitutive NOS activity. 5 These ®ndings suggest that iNOS activation contributes to tissue damage and that selective inhibitors of this isoform may be of interest for the treatment of stroke.
The present study investigates the role of N-methyl-D-aspartate (NMDA) receptors in a model of transient focal cerebral ischemia in normotensive rats. The left middle cerebral artery and both common carotid arteries were occluded for 60 min. Preliminary studies indicated that this gave reproducible infarctions of the cortex and striatum. These infarctions were the result of severe ischemia followed by complete reperfusion after clamp removal, as showed by striatal tissue Po2 monitoring. Microdialysis indicated that glutamate concentration increased immediately after occlusion and returned to the baseline value 40 min after clamp removal. MK-801 (1 mg kg-1 i.v.), an antagonist of the NMDA glutamatergic receptor, reduced the cortical infarct volume by 29% (p < 0.001) and the striatal infarct volume by 14% (p < 0.05) when given just prior to ischemia, but had no neuroprotective activity when given 30 min after the onset of ischemia. This short therapeutic window for MK-801 suggests that NMDA receptors play only a transient role in reversible focal ischemia in rats.
Granule membrane protein (GMP-140), also known as platelet activation- dependent granule-external membrane (PAD-GEM) is an integral membrane glycoprotein that is expressed on the platelet surface following degranulation. GMP-140, also expressed by endothelial cells, is part of a new family of cell adhesion molecules (selectins) related to the endothelial leukocyte adhesion molecule (ELAM-1) and to the lymphocyte homing receptors in humans (Leu-8/TQ1) and in mouse (gp90MEL-14). The role of GMP-140 in platelet functions remains to be elucidated. In this study, a monoclonal antibody, LYP20, was raised against GMP-140. LYP20, directed against a disulphide bridge-dependent epitope, significantly binds to thrombin-stimulated platelets (12,200 +/- 1,184 bound molecules/platelet, kd = 5.0 +/- 0.61 nmol/L) compared with controls (2,400 +/- 266 molecules/platelet, kd = 2.3 +/- 0.54 nmol/L) and inhibits collagen or thrombin-induced aggregation of washed platelets or platelets in platelet-rich plasma. In addition, LYP20 inhibits rosetting of thrombin-activated platelets to U937 cells. These results strongly suggest that GMP-140 plays an important role in platelet aggregation and platelet interaction with other blood cells.
Cumulative evidence has indicated a critical role of poly(ADP-ribose) polymerase-1 activation in ischemic brain damage. Poly(ADP-ribose) glycohydrolase (PARG) is a key enzyme in poly(ADP-ribose) catabolism. Our previous studies showed that PARG inhibitors, gallotannin (GT) and nobotanin B, can profoundly decrease oxidative cell death in vitro. Here, we tested the hypothesis that intranasal delivery of GT can decrease ischemic brain damage by inhibiting PARG. Intranasal delivery of 25 mg / kg GT within 5 hours after a 2-hour focal brain ischemia markedly decreased the infarct formation and neurological deficits of rats. The GT administration also increased poly(ADP-ribose) in the ischemic brains, suggesting that GT acts as a PARG inhibitor in vivo. Furthermore, the GT treatment abolished nuclear translocation of apoptosis-inducing factor (AIF) in the ischemic brains, suggesting that prevention of AIF translocation may contribute to the protective effects of GT. In contrast, intravenous injection of GT, at 2 hours after ischemic onset, did not reduce ischemic brain damage. Collectively, our findings suggest that PARG inhibition can significantly decrease ischemic brain injury, possibly by blocking AIF translocation. This study also highlights distinct merits of intranasal drug delivery for treating CNS diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.