The adsorption properties of water on the stoichiometric (101) surface of anatase TiO2 in the temperature range 160–400 K has been studied by synchrotron radiation core level photoelectron spectroscopy. O 1s spectra give clear evidence for the formation of a first layer of water that comprises both H2O and OH. The composition is 0.77 ± 0.05 ML H2O and 0.47 ± 0.05 ML OH. Decreasing the coverage by heating leads to a decreased H2O/OH ratio. The results are very similar to those recently reported for water on rutile TiO2(110) and show that the previously proposed model of molecular adsorption only on anatase TiO2(101) must be revised.
We present high-pressure x-ray photoelectron spectroscopy (HP-XPS) and first-principles kinetic Monte Carlo study addressing the nature of the active surface in CO oxidation over Pd(100). Simultaneously measuring the chemical composition at the surface and in the near-surface gas phase, we reveal both O-covered pristine Pd(100) and a surface oxide as stable, highly active phases in the near-ambient regime accessible to HP-XPS. Surprisingly, no adsorbed CO can be detected during high CO(2) production rates, which can be explained by a combination of a remarkably short residence time of the CO molecule on the surface and mass-transfer limitations in the present setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.