This research investigation has been carried out in Computer Numerical Control (CNC) turning of 40–50 Hardness Rockwell C (HRC) hardened high chromium high carbon steel (HCHCR-D3) specimen for the findings of surface roughness (Ra) and the tool wear. The HCHCR-D3 steel, which has excellent abrasion and wear resistance, is machined with the physical vapor deposition (PVD) coated carbide (CNMG) turning insert nomenclature based on shape, clearance angle, tolerance and type of tool inserts. The coatings preferred are Titanium Nitrate (TiN), Aluminium Chromium Nitrate (AlCrN) and Latuma for the coating thickness of 3–4μm. The varying input parameters of speed and depth of cut under constant feed rate are used as machining parameters for this CNC turning operation. The machined surface characterization and tool wear have been investigated analytically in this manuscript along with the predicted results of effective stresses and temperatures under dynamic cutting conditions in Deform 3D can be related. The outcomes indicate that the depth of cut and the hardening effect (HRC) are the major influencing parameter on surface roughness. Less tool wear and machining time are obtained by the usage of coated CNMG tool insert for high-speed cutting conditions which results in minimization of wear interruption and growth in surface improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.