The research and analysis of gunshot residues has a relevant role in the examination of gunshot wounds. Nevertheless, very little literature exists concerning gunshot wounds on charred material. In this study, 16 adult bovine ribs (eight still with soft tissues and eight totally skeletonized) underwent a shooting test with two types of projectiles (9 mm full metal-jacketed bullet and 9 mm unjacketed bullet). Each rib then underwent a charring process in an electric oven, reaching the stage of complete calcination at 800°C. The area of each entrance wound was analyzed before and after the carbonization process via a scanning electron microscope (SEM) equipped with an energy dispersive X-ray analyzer (EDX). In each sample, metallic residues composed of lead, barium, and antimony were found. These metallic residues were thus preserved also after exposure to the extremely high temperatures reached within the oven, especially with unjacketed bullets, although the particles seem to be more irregular in shape as a result of the heating process. In conclusion, this study proved that gunshot residues survive extremely high temperatures and can be detected via SEM/EDX even in cases of charred tissues.
Very little literature exists concerning radiochemical and microscopic analyses of gunshot wounds in decomposed material, and even less concerning skeletonized samples; the most advanced technologies may provide useful indications for the diagnosis of suspect lesions, especially if gunshot wounds are no longer recognizable. However, we know very little of the survival of gunshot residues (GSR) in skeletonized samples. This study examined nine gunshot wounds produced on pig heads which then underwent skeletonization for 4 years, and four gunshot entries on human heads from judicial cases which were then macerated to the bone in water; the samples underwent scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX) analysis. Positive results for GSR were observed only in four of the nine animal samples and in all four human samples. Among the human samples, two lesions showed Pb and Sb, one lesion only Pb, and one Pb, Sb, and Ba. This pilot study showed the survival of GSR in skeletal material and therefore the crucial importance of SEM-EDX analyses on skeletonized material. Further studies are needed in order to ascertain the role of environmental modifications of GSR.
Very little literature exists on gunshot wounds on decomposed material. In this study, seven pig heads underwent a shooting test. Entrance wounds from the first head underwent neutron activation analysis (NAA) and histological testing immediately after the firing test; the other six heads were exposed to two different environments (open air and soil) and analyzed by radiochemical and histological tests every 15 days. Gunshot wounds in air maintained their morphological characteristics, and those in soil showed severe alteration after 5 weeks. Microscopic testing verified positive results for lead in all gunshot wounds in open air, whereas in most of those in soil lead could not be detected. Radiochemical analysis performed by NAA yielded for all gunshot wounds but one antimony quantities in the range of 0.07-13.89 microg. In conclusion, it may be possible to detect residues of antimony even in degraded tissues.
The study of skin and bone lesions may give information concerning type and manner of production, but in burnt material modification of tissues by the high temperatures may considerably change the morphological characteristics of the lesions. This study aims at pointing out the effects of burning head of pigs with several types of lesions (blunt trauma, sharp force, and gunshot lesions) on soft tissues and bones, both from a morphological and chemical point of view. Results show that the charring process does not completely destroy signs of lesions on bones, which can often be recovered by cleaning bone surface from charred soft-tissue residues. Furthermore, neutron activation analysis test proved that antimony may be detectable also on gunshot entry wounds at the final stages of charring process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.