In the simple errors‐in‐variables model the least squares estimator of the slope coefficient is known to be biased towards zero for finite sample size as well as asymptotically. In this paper we suggest a new corrected least squares estimator, where the bias correction is based on approximating the finite sample bias by a lower bound. This estimator is computationally very simple. It is compared with previously proposed corrected least squares estimators, where the correction aims at removing the asymptotic bias or the exact finite sample bias. For each type of corrected least squares estimators we consider the theoretical form, which depends on an unknown parameter, as well as various feasible forms. An analytical comparison of the theoretical estimators is complemented by a Monte Carlo study evaluating the performance of the feasible estimators. The new estimator proposed in this paper proves to be superior with respect to the mean squared error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.