A crucial task in the procedure of identifying the parameters of a kinematic model of an articulated arm coordinate measuring machine (AACMM) or robot arm is the process of capturing data. In this paper a capturing data method is analyzed using a self-centering active probe, which drastically reduces the capture time and the required number of positions of the gauge as compared to the usual standard and manufacturer methods. The mathematical models of the self-centering active probe and AACMM are explained, as well as the mathematical model that links the AACMM global reference system to the probe reference system. We present a self-calibration method that will allow us to determine a homogeneous transformation matrix that relates the probe's reference system to the AACMM last reference system from the probing of a single sphere. In addition, a comparison between a self-centering passive probe and self-centering active probe is carried out to show the advantages of the latter in the procedures of kinematic parameter identification and verification of the AACMM.
A new procedure for the calibration of an articulated arm coordinate measuring machine (AACMM) is presented in this paper. First, a self-calibration algorithm of four laser trackers (LTs) is developed. The spatial localization of a retroreflector target, placed in different positions within the workspace, is determined by means of a geometric multilateration system constructed from the four LTs. Next, a nonlinear optimization algorithm for the identification procedure of the AACMM is explained. An objective function based on Euclidean distances and standard deviations is developed. This function is obtained from the captured nominal data (given by the LTs used as a gauge instrument) and the data obtained by the AACMM and compares the measured and calculated coordinates of the target to obtain the identified model parameters that minimize this difference. Finally, results show that the procedure presented, using the measurements of the LTs as a gauge instrument, is very effective by improving the AACMM precision.
This paper presents a comparison of different techniques to capture nominal data for its use in later verification and kinematic parameter identification procedures for articulated arm coordinate measuring machines (AACMM). By using four different probing systems (passive spherical probe, active spherical probe, self-centering passive probe and self-centering active probe) the accuracy and repeatability of captured points has been evaluated by comparing these points to nominal points materialized by a ball-bar gauge distributed in several positions of the measurement volume. Then, by comparing these systems it is possible to characterize the influence of the force over the final results for each of the gauge and probing system configurations. The results with each of the systems studied show the advantages and original accuracy obtained by active probes, and thus their suitability in verification (active probes) and kinematic parameter identification (self-centering active probes) procedures.
This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.