The composition and antibacterial properties of copper particles synthesized by a very simple reduction method were studied. For the preparation of particles in knitted fabrics, copper(II) sulfate was used as a precursor and ascorbic acid as a reducing natural agent. X-ray diffraction analysis showed the crystalline nature of the obtained particles. The round or oval particles and their agglomerates in knitted fabrics consisted of copper with traces of copper(I) oxide—cuprite. The element maps and energy dispersive X-ray spectra showed a high content of copper in the samples. The samples of wool and cotton knitted fabrics with copper particles had excellent antibacterial activity against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) bacterial strains. The maximum zones of inhibition were 19.3 mm for S. aureus and 18.3 mm for E. coli using wool knitted fabric and 14.7 mm and 15.3 mm using cotton knitted fabric, respectively. The obtained results showed that the modified wool and cotton fabrics are suitable for use as inserts in reusable masks due to their noticeable and long-term activity against pathogenic bacteria.
Textile materials modified with copper-containing particles have antibacterial and antiviral properties that have prospects for use in healthcare. In the study, textile materials were saturated with copper-containing particles in their entire material volume by the absorption/diffusion method. The antibacterial properties of modified textile materials were confirmed by their inhibitory effect on Staphylococcus aureus, a Gram-positive bacterium that spreads predominantly through the respiratory tract. For the modification, ordinary textile materials of various origins and fiber structures were used. Technological conditions and compositions of modifying solutions were established, as well as the most suitable textile materials for modification. To assess the morphological and physical characteristics of copper-containing particles and the textile materials themselves, X-ray diffraction, a scanning electron microscope, and an energy-dispersive X-ray spectrum were used. In modified textile samples, XRD data showed the presence of crystalline phases of copper (Cu) and copper (I) oxide (Cu2O). On the grounds of the SEM/EDS analysis, the saturation of textile materials with copper-containing particles depends on the structure of the textile materials and the origins of the fibers included in their composition, as well as the modification conditions and the copper precursor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.