Parker Solar Probe (PSP) has shown that the solar wind in the inner heliosphere is characterized by the quasi omnipresence of magnetic switchbacks (“switchback” hereinafter), local backward bends of magnetic field lines. Switchbacks also tend to come in patches, with a large-scale modulation that appears to have a spatial scale size comparable to supergranulation on the Sun. Here we inspect data from the first 10 encounters of PSP focusing on different time intervals when clear switchback patches were observed by PSP. We show that the switchbacks modulation, on a timescale of several hours, seems to be independent of whether PSP is near perihelion, when it rapidly traverses large swaths of longitude remaining at the same heliocentric distance, or near the radial-scan part of its orbit, when PSP hovers over the same longitude on the Sun while rapidly moving radially inwards or outwards. This implies that switchback patches must also have an intrinsically temporal modulation most probably originating at the Sun. Between two consecutive patches, the magnetic field is usually very quiescent with weak fluctuations. We compare various parameters between the quiescent intervals and the switchback intervals. The results show that the quiescent intervals are typically less Alfvénic than switchback intervals, and the magnetic power spectrum is usually shallower in quiescent intervals. We propose that the temporal modulation of switchback patches may be related to the “breathing” of emerging flux that appears in images as the formation of “bubbles” below prominences in the Hinode/SOT observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.