This paper presents results obtained from seasonal evaluation of ground source heat pump (GSHP) and exhaust air heat pump (EAHP) systems used for heating and ventilation of a school building. A Matlab simulation program was developed with models of the following elements: the building thermal performance, central heating and ventilation installations, the ground source heat pump with the ground source heat exchanger and exhaust air heat pumps in air handling units. The system based exclusively on the GSHP attaining all heating needs of the central heating and ventilation installations was compared with the combined system of the GSHP and the EAHP. The analysis was based on hourly calculations of all energy capacities and COPs as well as seasonal performance factors. In addition, the energy ratings in terms of seasonal usage of delivered, renewable, auxiliary and primary energy were performed. Those energy ratings enabled the estimation of seasonal CO2 emissions in all analysed systems. The combined application of the GSHP and the EAHP in the building gave the lowest values of primary energy consumption and CO2 emissions among all considered systems.
Abstract.The paper addresses issues involving problems of implementing combined cooling, heating and power (CCHP) system to industrial facility with well-defined demand profiles of cooling, heating and electricity. The application of CCHP system in this particular industrial facility is being evaluated by comparison with the reference system that consists of three conventional methods of energy supply: (a) electricity from external grid, (b) heat from gas-fired boilers and (c) cooling from vapour compression chillers run by electricity from the grid. The CCHP system scenario is based on the combined heat and power (CHP) plant with gas turbine-compressor arrangement and water/lithium bromide absorption chiller of a single-effect type. Those two scenarios are analysed in terms of annual primary energy usage as well as emissions of CO2. The results of the analysis show an extent of primary energy savings of the CCHP system in comparison with the reference system. Furthermore, the environmental impact of the CCHP usage, in the form of greenhouse gases emission reductions, compares quite favourably with the reference conventional option.
Two heat pump systems with the highest energy performance indicators were chosen for an analysis. Those most efficient systems for heating and cooling are ground source heat pumps (GSHP) and the exhaust air heat pumps (EAHP). Consequently, two cases (case A and case B) with different pump configurations were related to a reference case R represented by gas-fired boilers covering heating needs and compression refrigeration units ensuring cooling needs. Technical assessment in the form of coefficients of performance as well as primary energy ratings were completed. An environmental impact taking into account CO 2 , SO 2 and NO x emissions of analysed heat pump systems was also evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.