The DNA damage checkpoints provide an anti-cancer barrier in diverse tumour types, however this concept has remained unexplored in prostate cancer (CaP). Furthermore, targeting DNA repair defects by PARP1 inhibitors (PARPi) as a cancer treatment strategy is emerging yet requires suitable predictive biomarkers. To address these issues, we performed immunohistochemical analysis of multiple markers of DNA damage signalling, oxidative stress, DNA repair and cell cycle control pathways during progression of human prostate disease from benign hyperplasia, through intraepithelial neoplasia to CaP, complemented by genetic analyses of TMPRSS2-ERG rearrangement and NQO1, an anti-oxidant factor and p53 protector. The DNA damage checkpoint barrier (γH2AX, pATM, p53) mechanism was activated during CaP tumorigenesis, albeit less and with delayed culmination compared to other cancers, possibly reflecting lower replication stress (slow proliferation despite cases of Rb loss and cyclin D1 overexpression) and progressive loss of ATM activator NKX3.1. Oxidative stress (8-oxoguanine lesions) and NQO1 increased during disease progression. NQO1 genotypes of 390 men did not indicate predisposition to CaP, yet loss of NQO1 in CaP suggested potential progression-opposing tumour suppressor role. TMPRSS2-ERG rearrangement and PTEN loss, events sensitizing to PARPi, occurred frequently along with heterogeneous loss of DNA repair factors 53BP1, JMJD1C and Rev7 (all studied here for the first time in CaP) whose defects may cause resistance to PARPi. Overall, our results reveal an unorthodox DNA damage checkpoint barrier scenario in CaP tumorigenesis, and provide novel insights into oxidative stress and DNA repair, with implications for biomarker guidance of future targeted therapy of CaP.
We confirmed that the AR gene polymorphism (SNP rs6152 G>A) is associated with the development of AGA and higher PSA levels in patients with BPH but not cancer. A novel finding of our study is that BPH patients with prostate inflammation had a significantly higher grade of AGA together with significantly higher PSA levels.
Fusion of TMPRSS2 with ERG in prostate cells is determined by double-strand DNA breaks induced by androgen signaling and transcription stress. The enzyme topoisomerase 2β (TOP2B) mediating DNA processing, plays an important role in DNA cleavage. The aim of this study was to analyse expression of AR, TOP2B and ERG in relation to TMPRSS2-ERG gene rearrangement and relevant clinicopathological characteristics in prostate cancer (CaP). Immunohistochemical staining and FISH were used for investigation. ERG expression in prostate cell lesions positively correlated with levels of TMPRSS2-ERG fusion gene (p<0.0001). The most significant co-expression of ERG was found with AR in CaP (p=0.001). Significantly more frequent co-expression of ERG was also revealed with TOP2B (p=0.028). ERG protein expression did not correlate with CaP differentiation status as we found no significant differences in ERG expression for different Gleason categories. We demonstrated a statistically significant positive correlation between the percentage of cells with fusion gene TMPRSS2-ERG in CaP and metastatic potential of tumors (p=0.011). Besides these positive corelations of AR with ERG (p=0.001) and TOP2B with ERG (p=0.028), we also demonstrated a significant co-expression of AR with TOP2B (p=0.007) in CaP. There was a statistically significant increase in the TOP2B H-index in locally advanced CaP in comparison with localized tumors (p=0.046). ERG expression correlates with occurrence of TMPRSS2-ERG fusion and with AR-driven malignant transformation. The results indicate that detection of the TMPRSS2-ERG fusion gene and parallel immunohistochemical examination of AR, TOP2B and ERG has diagnostic significance and may be useful in assessing the biological character of the prostate cancer as well as selecting the best treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.