Melanocortins are known to be involved in the regulation of feeding behavior. These hormones mediate their effects through G protein-coupled receptors (GPCRs) by stimulating adenylate cyclase. The melanocortin 3 receptor (MC3R) in the melanocortin receptor (MCR) family has been identified as a neural receptor subtype mainly expressed in the brain in mammals. Until now, only one heterozygous mutation (I183N) has been identified in the coding region of this receptor in two obese patients of the same family. In this study, we reported the functional characterization of the I183N mutated MC3R compared with that of the wild-type MC3R after transfection in HEK293 cells. Our results showed that the I183N mutation totally abolished the activity of the mutated receptor to generate intracellular cAMP. Furthermore, confocal microscopy observation revealed that the mutation induced an intracellular retention of the mutated receptor. Moreover, we demonstrated for the first time by co-transfection studies that the mutated receptor could reduce the wild-type receptor activity through a dominant negative effect.
Summary With an experimental model of spontaneous lung metastases in immunosuppressed newborn rats, seven clones and variants with different metastatic potential and gangliosides expression were derived from a single parental human melanoma cell line M4Be. The cellular radiosensitivity of M4Be and its seven sublines was estimated using an in vitro colony assay. The total amount of gangliosides in M4Be and its seven sublines was determined by cell extraction and thin-layer chromatography, while the expression of GD3 gangliosides was estimated by flow cytometry with a monoclonal antibody. The radiation-cell survival curves of most clones and variants derived from M4Be showed a zero dose extrapolation clearly lower than 100%, suggesting that two populations of cells of very different radiosensitivity coexist within each of these clones and variants. Although the proportion of radiosensitive cells could be estimated from the shape of the survival curve, its radiosensitivity is too high to be properly evaluated by the colony assay. The eight survival curves differ essentially in the proportion of radiosensitive cells -which varied from 0% to 40% among M4Be and its seven sublines -whereas the cellular radiosensitivity of the radioresistant population was similar among them. The metastatic potential in vivo of M4Be and its seven sublines was not significantly related to the cellular radiosensitivity of their corresponding radioresistant population, but significantly increased with the fraction of radiosensitive cells. This relationship is valid only when the highly metastatic cells are cultured for no more than five passages in vitro as the fraction of radiosensitive cells is rapidly lost during subcultures. The relationship remains valid in vivo as metastatic melanoma-bearing newborn rats whole body irradiated with 20 cGy show no lung metastasis compared with controls. The radiosensitive cell fraction is inversely correlated with both the total ganglioside content (r= 0.84, P < 0.02) and the number of cells positively labelled with the monoclonal antibody directed to GD3 (r= 0.92, P < 0.001). The incubation of a radiosensitive clone with the exogenous bovine brain ganglioside GM1 significantly increases the proportion of radioresistant cells and suppresses its metastatic potential, while the inhibition of the endogenous gangliosides synthesis in the radioresistant cell line M4Be increases the proportion of radiosensitive cells. This study provides a possible explanation for the correlation between the metastatic potential and the proportion of radiosensitive cells within the seven sublines derived from a single parental human melanoma cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.