The objective of a sensor network is the execution of specific signal processing functions on data that are collected in a distributed fashion. The transmission of the data is facilitated by protocols whose operations may be constrained by physical limitations of the network units, while their performance must simultaneously comply with the performance requirements of the deployed signal processing operations. At the same time, the network architecture affects the performance of both the signal processing and the data transmission operations, while some of the sensors may generate high-priority data. In this paper, we consider clustered sensor network topologies deploying a specific stable random access transmission algorithm per cluster, which facilitates high-priority data. We then introduce a dynamic architectural reconfiguration algorithm which controls individual cluster rates for optimal overall network performance. The latter algorithm is facilitated by a high-level traffic rate monitoring protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.