Transmissible spongiform encephalopathy strains can be differentiated by their behavior in bioassays and by molecular analyses of the disease-associated prion protein (PrP) in a posttranslationally transformed conformation (PrP Sc ). Until recently, isolates from cases of bovine spongiform encephalopathy (BSE) appeared to be very homogeneous. However, a limited number of atypical BSE isolates have recently been identified upon analyses of the disease-associated proteinase K (PK) resistance-associated moiety of PrP Sc (PrP res ), suggesting the existence of at least two additional BSE PrP res variants. These are defined here as the H type and the L type, according to the higher and lower positions of the nonglycosylated PrP res band in Western blots, respectively, compared to the position of the band in classical BSE (C-type) isolates. These molecular PrP res variants, which originated from six different European countries, were investigated together. In addition to the migration properties and glycosylation profiles (glycoprofiles), the H-and L-type isolates exhibited enhanced PK sensitivities at pH 8 compared to those of the C-type isolates. Moreover, H-type BSE isolates exhibited differences in the binding of antibodies specific for N-and more C-terminal PrP regions and principally contained two aglycosylated PrP res moieties which can both be glycosylated and which is thus indicative of the existence of two PrP res populations or intermediate cleavage sites. These properties appear to be consistent within each BSE type and independent of the geographical origin, suggesting the existence of different BSE strains in cattle. The choice of three antibodies and the application of two pHs during the digestion of brain homogenates provide practical and diverse tools for the discriminative detection of these three molecular BSE types and might assist with the recognition of other variants.
Transgenic mice expressing bovine prion protein (PrP)(C) (Tgbov XV mice) display remarkably shorter incubation times for cattle-derived bovine spongiform encephalopathy (BSE) infectivity than do nontransgenic mice. To verify that this phenomenon reflects increased sensitivity, we challenged Tgbov XV mice and conventional RIII mice with a BSE brain-stem homogenate of known infectivity titer in cattle. An end-point titration experiment in Tgbov XV mice revealed their superior sensitivity, which exceeded that of RIII mice by at least 10,000-fold and even that of cattle by approximately10-fold. Moreover, Tgbov XV mice were challenged with various tissues from cattle with end-stage clinical BSE, and infectivity was found only in the central and peripheral nervous system and not in lymphatic tissues; the only exception was the Peyer's patches of the distal ileum, which most likely are the site of entry for BSE infectivity. These results provide further indication that the pathogenesis of BSE in cattle is fundamentally different from that in sheep and mice, due to an exclusive intraneuronal spread of infectivity from the gut to the central nervous system.
The susceptibility of sheep to scrapie is known to involve, as a major determinant, the nature of the prion protein (PrP) allele, with the VRQ allele conferring the highest susceptibility to the disease. Transgenic mice expressing in their brains three different ovine PrP VRQ -encoding transgenes under an endogenous PrPdeficient genetic background were established. Nine transgenic (tgOv) lines were selected and challenged with two scrapie field isolates derived from VRQ-homozygous affected sheep. All inoculated mice developed neurological signs associated with a transmissible spongiform encephalopathy (TSE) disease and accumulated a protease-resistant form of PrP (PrPres) in their brains. The incubation duration appeared to be inversely related to the PrP steady-state level in the brain, irrespective of the transgene construct. The survival time for animals from the line expressing the highest level of PrP was reduced by at least 1 year compared to those of two groups of conventional mice. With one isolate, the duration of incubation was as short as 2 months, which is comparable to that observed for the rodent TSE models with the briefest survival times. No survival time reduction was observed upon subpassaging of either isolate, suggesting no need for adaptation of the agent to its new host. Overexpression of the transgene was found not to be required for transmission to be accelerated compared to that observed with wild-type mice. Conversely, transgenic mice overexpressing murine PrP were found to be less susceptible than tgOv lines expressing ovine PrP at physiological levels. These data argue that ovine PrP VRQ provided a better substrate for sheep prion replication than did mouse PrP. Altogether, these tgOv mice could be an improved model for experimental studies on natural sheep scrapie.
Atypical neuropathological and molecular phenotypes of bovine spongiform encephalopathy (BSE) have recently been identified in different countries. One of these phenotypes, named bovine “amyloidotic” spongiform encephalopathy (BASE), differs from classical BSE for the occurrence of a distinct type of the disease-associated prion protein (PrP), termed PrPSc, and the presence of PrP amyloid plaques. Here, we show that the agents responsible for BSE and BASE possess different biological properties upon transmission to transgenic mice expressing bovine PrP and inbred lines of nontransgenic mice. Strikingly, serial passages of the BASE strain to nontransgenic mice induced a neuropathological and molecular disease phenotype indistinguishable from that of BSE-infected mice. The existence of more than one agent associated with prion disease in cattle and the ability of the BASE strain to convert into the BSE strain may have important implications with respect to the origin of BSE and spongiform encephalopathies in other species, including humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.