In this study, we have analyzed the chemical composition and antiproliferative activity of propolis from three different arid and semiarid regions of Sonora, Mexico. We identified and quantitated the main chemical constituents of propolis by HPLC-MS. The most abundant constituents of propolis were pinocembrin, pinobanksin 3-acetate, and chrysin. Sonoran propolis had a strong antiproliferative activity on both murine and human cancer cell lines in a concentration-dependent manner. The propolis constituents CAPE, galangin, xanthomicrol and chrysin showed significant antiproliferative activity on most of the cancer cells tested. DNA harvested from cancer cell cultures treated with Sonoran propolis exhibited a ladder of internucleosomal DNA cleavage characteristic of apoptosis. In summary, we have identified and quantitated the main constituents of Sonoran propolis. These propolis samples possess a strong antiproliferative activity on cancer cell lines.
clinical evaluation, flow patency, and histopathological findings of a novel glaucoma drainage implant (GDI) made of poly(styrene-b-isobutyleneb-styrene) (SIBS) in rabbits. Methods: In 16 normal eyes, the proximal end of the SIBS GDI was inserted into the anterior chamber while the distal end was placed in the subconjunctival space. A control group underwent implantation of a similarly designed silicone GDI. Slitlamp follow-up and intraocular pressure measurements were recorded. Flow patency was evaluated by injecting 0.01% fluorescein into the anterior chamber. Immunostaining against collagen IV, macrophages, and ␣ smooth muscle actin was performed. Results: Slitlamp examination suggested adequate biocompatibility. A low and diffuse bleb was observed in the SIBS group. All SIBS tubes were patent 6 months after insertion. Immunostaining demonstrated noncontinuous collagen deposition. No macrophages or myofibroblasts were visible around the SIBS tubes. In contrast, silicone induced collagen deposition and myofibroblast differentiation. Conclusion: This new GDI is clinically biocompatible in the rabbit and maintained 100% patency at 6 months. A remarkable difference was the absence of myofibroblasts in the surrounding tissue in the SIBS group. Clinical Relevance: This novel GDI made of SIBS would prevent the feared complication of hypotony and will decrease the amount of subconjunctival fibrosis.
Purpose. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. Methods. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface curvatures were measured with an optical comparator. Lens refractive power was measured with a custom optical system based on the Scheiner principle. The refractive contributions of the gradient, the surfaces, and the equivalent refractive index were calculated with optical ray-tracing software. The age dependence of the optical and biometric parameters was assessed. Results. Over the measured age range isolated lens thickness decreased (baboon: -0.04, cyno: -0.05, and rhesus: -0.06 mm/y) and equatorial diameter increased (logarithmically for the baboon and rhesus, and linearly for cyno: 0.07 mm/y). The isolated lens surfaces flattened and the corresponding refractive power from the surfaces decreased with age (-0.33, -0.48, and -0.68 D/y). The isolated lens equivalent refractive index decreased (only significant for the baboon, -0.001 D/y), and as a result the total isolated lens refractive power decreased with age (baboon: -1.26, cyno: -0.97, and rhesus: -1.76 D/y). Conclusions. The age-dependent trends in the optical and biometric properties, growth, and aging, of nonhuman primate lenses are similar to those of the pre-presbyopic human lens. As the lens ages, the decrease in refractive contributions from the gradient refractive index causes a rapid age-dependent decrease in maximally accommodated lens refractive power.
Fractions from an organic extract from fresh octopus (Paraoctopus limaculatus) were studied for biological activities such as antimutagenic and antiproliferative properties using Salmonella tester strains TA98 and TA100 with metabolic activation (S9) and a cancer cell line (B-cell lymphoma), respectively. A chloroform extract obtained from octopus tentacles was sequentially fractionated using thin layer chromatography (TLC), and each fraction was tested for antimutagenic and antiproliferative activities. Organic extract reduced the number of revertants caused by aflatoxin B1 showing a dose-response type of relationship. Sequential TLC fractionation of the active extracts produced several antimutagenic and/or antiproliferative fractions. Based on the results obtained, the isolated fractions obtained from octopus contain compounds with chemoprotective properties that reduce the mutagenicity of AFB1 and proliferation of cancer cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.