In this paper, we present a modified density-dependent Drucker-Prager Cap (DPC) model to simulate the compaction behaviour of pharmaceutical powders. In particular, a nonlinear elasticity law is proposed to describe the observed nonlinear unloading behaviour following compaction. To extract the material parameters for the modified DPC model, a novel experimental calibration procedure is used, based on uniaxial single-ended compaction tests using an instrumented cylindrical die. The model is implemented in ABAQUS by writing a user subroutine, and a calibration process on microcrystalline cellulose (MCC) Avicel PH101 powders is detailed. The calibrated parameters are used for the manufacturing process simulation of two kinds of typical pharmaceutical tablets: the flat-face tablet and the concave tablet with single or double radius curvatures. The model developed can describe not only the compression and decompression phases, but also the ejection phase. The model is validated by comparing finite element simulations with experimental loading-unloading curves during the manufacture of 8 and 11 mm round tablets with flat-face (FF), single radius concave (SRC) and double radius concave (DRC) profiles. Moreover, the density and stress distributions during tabletting are used to analyse and explain the failure mechanism of tablets. The results show that the proposed model can quantitatively reproduce the compaction behaviour of pharmaceutical powders and can be used to obtain the stress and density distributions during compression, decompression and ejection.
Five pharmaceutical materials, including two salts and three
neutral compounds, have been subjected to nanoindentation
analysis on a single-crystal scale. The nanoindentation experiments were used to calculate a brittleness index for each of the
five materials. These results were compared to the size reductions that were obtained on a pilot-plant scale mill. A good
correlation between single crystal and large pilot-plant scale
results was obtained for the range of materials studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.