The kinetic and thermodynamic features of free‐radical batch emulsion polymerization of a sugar monomer (3‐MDG) and butyl acrylate (BA) were investigated in a power compensation calorimeter. The homopolymerizations as well as the copolymerization have been studied. The overall activation energy of 3‐MDG homopolymerization was 140 ± 3.8 kJ · mol−1, the polymerization enthalpy was ΔHMDG = −51.6 ± 1.9 kJ · mol−1 and the calculated adiabatic temperature rise was ΔTad = 78.5 K. The effects of the initiator and the emulsifier concentrations on the 3‐MDG/BA batch copolymerization kinetics and on the colloidal properties of the final sugar latexes were studied at 60 °C. At higher emulsifier and initiator concentration, respectively, the polymerization rate increases and the particle size decreases, but the trends do not conform to the Smith‐Ewart theory. Polydisperse sugar latex particles with a mean diameter in the range of 50–67 nm were obtained.Relationship between the activation energy and the conversion for BA (open symbols) and 3‐MDG (solid symbols).magnified imageRelationship between the activation energy and the conversion for BA (open symbols) and 3‐MDG (solid symbols).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.