Radiation, winds and jets from the active nucleus of a massive galaxy can interact with its interstellar medium leading to ejection or heating of the gas. This can terminate star formation in the galaxy and stifle accretion onto the black hole. Such Active Galactic Nucleus (AGN) feedback can account for the observed proportionality between central black hole and host galaxy mass. Direct observational evidence for the radiative or quasar mode of feedback, which occurs when the AGN is very luminous, has been difficult to obtain but is accumulating from a few exceptional objects. Feedback from the kinetic or radio mode, which uses the mechanical energy of radio-emitting jets often seen when the AGN is operating at a lower level, is common in massive elliptical galaxies. This mode is well observed directly through X-ray observations of the central galaxies of cool core clusters in the form of bubbles in the hot surrounding medium. The energy flow, which is roughly continuous, heats the hot intracluster gas and reduces radiative cooling and subsequent star formation by an order of magnitude. Feedback appears to maintain a long-lived heating/cooling balance. Powerful, jetted radio outbursts may represent a further mode of energy feedback which affect the cores of groups and subclusters. New telescopes and instruments from the radio to X-ray bands will come into operation over the next few years and lead to a rapid expansion in observational data on all modes of AGN feedback.
The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ∼10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the
We present source catalogs for the 4 Ms Chandra Deep Field-South (CDF-S), which is the deepest Chandra survey to date and covers an area of 464.5 arcmin 2 . We provide a main Chandra source catalog, which contains 740 X-ray sources that are detected with WAVDETECT at a false-positive probability threshold of 10 −5 in at least one of three X-ray bands (0.5-8 keV, full band; 0.5-2 keV, soft band; and 2-8 keV, hard band) and also satisfy a binomial-probability source-selection criterion of P < 0.004 (i.e., the probability of sources not being real is less than 0.004); this approach is designed to maximize the number of reliable sources detected. A total of 300 main-catalog sources are new compared to the previous 2 Ms CDF-S main-catalog sources. We determine X-ray source positions using centroid and matched-filter techniques and obtain a median positional uncertainty of ≈ 0.42 ′′ . We also provide a supplementary catalog, which consists of 36 sources that are detected with WAVDETECT at a false-positive probability threshold of 10 −5 , satisfy the condition of 0.004 < P < 0.1, and have an optical counterpart with R < 24. Multiwavelength identifications, basic optical/infrared/radio photometry, and spectroscopic/photometric redshifts are provided for the X-ray sources in the main and supplementary catalogs. 716 (≈ 97%) of the 740 main-catalog sources have multiwavelength counterparts, with 673 (≈ 94% of 716) having either spectroscopic or photometric redshifts. The 740 main-catalog sources span broad ranges of full-band flux and 0.5-8 keV luminosity; the 300 new main-catalog sources span similar ranges although they tend to be systematically lower. Basic analyses of the X-ray and multiwavelength properties of the sources indicate that > 75% of the main-catalog sources are AGNs; of the 300 new main-catalog sources, about 35% are likely normal and starburst galaxies, reflecting the rise of normal and starburst galaxies at the very faint flux levels uniquely accessible to the 4 Ms CDF-S. Near the center of the 4 Ms CDF-S (i.e., within an off-axis angle of 3 ′ ), the observed AGN and galaxy source densities have reached 9800 +1300 −1100 deg −2 and 6900 +1100 −900 deg −2 , respectively. Simulations show that our main catalog is highly reliable and is reasonably complete. The mean backgrounds (corrected for vignetting and exposure-time variations) are 0.063 and 0.178 count Ms −1 pixel −1 (for a pixel size of 0.492 ′′ ) for the soft and hard bands, respectively; the majority of the pixels have zero background counts. The 4 Ms CDF-S reaches on-axis flux limits of ≈ 3.2 × 10 −17 , 9.1 × 10 −18 , and 5.5 × 10 −17 erg cm −2 s −1 for the full, soft, and hard bands, respectively. An increase in the CDF-S exposure time by a factor of ≈ 2-2.5 would provide further significant gains and probe key unexplored discovery space.
X-ray ionized reflection occurs when a surface is irradiated with X-rays so intense that its ionization state is determined by the ionization parameter ξ ∝ F/n, where F is the incident flux and n the gas density. It occurs in accretion, on to compact objects including black holes in both active galaxies and stellar-mass binaries, and possibly in gamma-ray bursts. Computation of model reflection spectra is often time consuming. Here we present the results from a comprehensive grid of models computed with our code, which has now been extended to include what we consider to be all energetically important ionization states and transitions. This grid is being made available as an ionized-reflection model, REFLION, for XSPEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.