The push toward the miniaturization of electro-mechanical devices and the resulting need for micro-power generation (milli-watts to watts) with low-weight, long-life devices has led to the recent development of the field of micro-scale combustion. The concept behind this new field is that since batteries have low specific energy, and liquid hydrocarbon fuels have a very high specific energy, a miniaturized power generating device, even with a relatively inefficient conversion of hydrocarbon fuels to power would result in increased lifetime and/or reduced weight of an electronic or mechanical system that currently requires batteries for power. In addition to the interest in miniaturization, the field is also driven by the potential fabrication of the devices using Micro Electro Mechanical Systems (MEMS) or rapid prototyping techniques, with their favorable characteristics for mass production and low cost. The micro-power generation field is very young, and still is in most cases in the feasibility stage. However, considering that it is a new frontier of technological development, and that only a few projects have been funded, it can be said that significant progress has been made to date. Currently there is consensus, at least among those working in the field, that combustion in the micro-scale is possible with proper thermal and chemical management. Several meso-scale and micro-scale combustors have been developed that appear to operate with good combustion efficiency. Some of these combustors have been applied to energize thermoelectric systems to produce electrical power, although with low overall efficiency. Several turbines/engines have also been, or are being, developed, some of them currently producing positive power, also with low efficiency to date. Micro-rockets using solid or liquid fuels have been built and shown to produce thrust. Hydrogen-based micro size fuel cells have been successfully developed, and there is a need to develop reliable reformers (or direct-conversion fuel cells) for liquid hydrocarbons so that the fuel cells become competitive with batteries. In this work, some of the technological issues related to meso and micro-scale combustion and the operation of thermochemical devices for power generation will be discussed. Some of the systems currently being developed will be presented and described.
In this work, the kinetic parameters governing the thermal and oxidative degradation of flexible polyurethane foam are determined using thermogravimetric data and a genetic algorithm. These kinetic parameters are needed in the theoretical modeling of the foam's smoldering behavior.Experimental thermogravimetric mass-loss data are used to explore the kinetics of polyurethane foam and to propose a mechanism consisting of five reactions. A lumped model of solid mass-loss based on Arrhenius-type reaction rates and the five-step mechanism is developed to predict the polyurethane thermal degradation. The predictions are compared to the thermogravimetric measurements, and using a genetic algorithm, the method finds the kinetic and stoichiometric parameters that provide the best agreement between the lumped model and the experiments. To date, no study has attempted to describe both forward and opposed smolder-propagation with the same kinetic mechanism. Thus, in order to verify that the polyurethane kinetics determined from thermogravimetric experiments can be used to describe the reactions involved in polyurethane smoldering combustion, the five-step mechanism and its kinetic parameters are incorporated into a simple species model of smoldering combustion. It is shown that the species model agrees with experimental observations and that it captures phenomenologically the spatial distribution of the different species and the reactions in the vicinity of the front, for both forward and opposed propagation. The results indicate that the kinetic scheme proposed here is the first one to describe smoldering combustion of polyurethane in both propagation modes.
Recent advances i n the experimental study of the mechanisms controlling the spread o f flames over the surface of combustible solids are summarized i n this work. The heat transfer and gas phase chemical kinetic aspects of the flame spread process are addressed separately for the spread o f flames in oxidizing flows that oppose or concur with the direction of propagation. The realization that, in most practical situations, the spread of fire i n opposed gas flows occurs at near extinction or non-propagating conditions is particularly significant. Under these circumstances, gas phase chemical kinetics plays a critical role and it must be considered i f realistic descriptions o f the flame spread process are attempted. I n the concurrent mode of flame spread, heat transfer from the flame to the unburnt fuel appears to be the primary controlling mechanism. Although gas phase chemcial kinetics is unimportant in the flame spreading process, i t is important in the establishment and extension o f the diffusion flame that generates the spread process. The current experimental observations, although still i n need of further verification, provide insight toward the development o f accurate descriptions of the flame spread process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.