Adult chondrocytes are less chondrogenic than immature cells, yet it is likely that autologous cells from adult patients will be used clinically for cartilage engineering. The aim of this study was to compare the postexpansion chondrogenic potential of adult nasal and articular chondrocytes. Bovine or human chondrocytes were expanded in monolayer culture, seeded onto polyglycolic acid (PGA) scaffolds, and cultured for 40 days. Engineered cartilage constructs were processed for histological and quantitative analysis of the extracellular matrix and mRNA. Some engineered constructs were implanted in athymic mice for up to six additional weeks before analysis. Using adult bovine tissues as a cell source, nasal chondrocytes generated a matrix with significantly higher fractions of collagen type II and glycosaminoglycans as compared with articular chondrocytes. Human adult nasal chondrocytes proliferated approximately four times faster than human articular chondrocytes in monolayer culture, and had a markedly higher chondrogenic capacity, as assessed by the mRNA and protein analysis of in vitro-engineered constructs. Cartilage engineered from human nasal cells survived and grew during 6 weeks of implantation in vivo whereas articular cartilage constructs failed to survive. In conclusion, for adult patients nasal septum chondrocytes are a better cell source than articular chondrocytes for the in vitro engineering of autologous cartilage grafts. It remains to be established whether cartilage engineered from nasal cells can function effectively when implanted at an articular site.
Type II collagen and aggrecan are major components of the extracellular matrix of articular cartilage. Their biosynthesis and catabolism are regulated by chondrocytes. They may be used as markers of chondrocyte phenotype for cells cultured in vitro. Type II collagen gene expression was detected by amplification of type II collagen-specific sequences, using cDNA produced by reverse transcription of mRNA extracted from freshly isolated and cultured human articular chondrocytes by the polymerase chain reaction (PCR). The synthesis of gene product was confirmed by immunohistochemical localization of type II collagen in cartilage sections and in cultured chondrocytes. Aggrecan core protein was also immunolocalized in cartilage sections and in chondrocytes in culture. Expression of type II collagen or aggrecan was not detected immunohistochemically in skin or bone. These results demonstrate that human articular chondrocytes can be characterized in culture, by the combined application of PCR and immunohistochemistry. Interleukin-1beta (IL-1beta) may play an important role in the destruction of cartilage matrix in arthritis, whereas transforming growth factor-beta (TGFbeta) may have an opposing effect and their combined actions may modulate chondrocyte phenotype. The effect of rhIL-1beta and rhTGFbeta on the production of type II collagen by chondrocytes in culture was investigated. It was shown that TGFbeta enhanced the production of type II collagen, localized immunocytochemically, in cultured chondrocytes. IL-1beta inhibited expression of mRNA for type II collagen. The implications of this study, in terms of a better understanding of degenerative cartilage disease, are discussed.
The annual regrowth of antlers in male deer is a unique example of complete bone regeneration occurring in an adult animal. Growth is initiated at the distal antler tip, which is similar to the epiphyseal growth plate in some respects. However, there is some debate as to whether this process represents “true” endochondral ossification. As part of the characterization of the developmental process in pre‐osseus antler tissue, we have studied, by in situ hybridization, the spatial expression of mRNAs for types I, II, and X collagen. Viewed in a coronal plane, type I procollagen mRNA was observed in skin, the fibrous perichondrium, and the densely cellular area immediately adjacent to the perichondrium. Below this area, as cells began to assume a columnar arrangement and coincident with the appearance of a vasculature and synthesis of a cartilaginous matrix, transcripts for types I, IIA, IIB procollagen and X collagen were detected. Further down in the cartilage zone, the pattern of type I procollagen mRNA expression was altered. Here, the signal was detected only in a morphologically distinct subpopulation of small, flattened cells within the intercellular matrix at the periphery of the columns of chondrocytes. The alternative splice form of type II procollagen mRNA (IIA), characteristic of chondroprogenitor cells (Sandell et al. [1991] J. Cell Biol. 114:1307‐1319), was expressed by a subset of cells in the upper region of the columns, indicating that this zone contains a population of prechondrocytic cells. Positive hybridization to type IIA was most abundant in these cells. In contrast, transcripts for the other procollagen splice form (IIB) and type X collagen were expressed by chondrocytes throughout the whole of the cartilage region studied. The translation and export of type II collagen and type X collagen were confirmed by detecting specific immunoreactivity for each. The spatial distribution of immunoreactivity for collagen types II and X was consistent with that of corresponding mRNAs. These data demonstrate for the first time the distinct pattern of expression of genes for major cartilage matrix macromolecules, the expression of the differentially spliced form of type II procollagen mRNA (IIA), and specifically the colocalization of types II and X collagen in the developing antler tip. Taken together, they strongly indicate that antler growth involves an endochondral process. © 1996 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.