Equilibrium geometries and cohesion energies of Ag0.94Cd0.06, Ag0.94In0.06, Au0.94Cd0.06, and Au0.94In0.06 solid alloys have been studied from the first principles within the Density Functional Theory using ab initio pseudopotentials. Equilibrium geometries are obtained by total energy minimization method using the Local Density Approximation and Generalized Gradient Approximation methods. Optical functions are calculated within the independent particles picture. We report essentially different behavior of Cd and In impurity atoms in Au- and Ag-based alloys: the aggregated (or quasi aggregated) phases in In-containing alloys are expected in contrast to the alloys with Cd atom where homogeneous impurity distribution over the bulk should dominate. Study of optical spectra in Ag0.94Cd0.06 and Au0.94Cd0.06 alloys indicate that optical losses in visible and near ultraviolet spectral range remarkably increase at bigger Cd concentrations. In ultraviolet spectral region redistribution of optical oscillator strengths results in both increase and decrease of optical losses in selected spectral regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.