As previously shown, 11 loci are required to complement human cytomegalovirus (HCMV) DNA replication in a transient-transfection assay (G. S. Pari and D. G. Anders, J. Virol. 67:6979-6988, 1993). Six of these loci encode known or candidate replication fork proteins, as judged by sequence and biochemical similarities to herpes simplex virus homologs of known function; three encode known immediate early regulatory proteins (UL36-38, IRS1/TRS1, and the major immediate early region spanning UL122-123); and two encode early, nucleus-localized proteins of unknown functions (UL84 and UL112-113). We speculated that proteins of the latter five loci might cooperate to promote and regulate expression of the six replication fork proteins. To test this hypothesis we made luciferase reporter plasmids for each of the replication fork gene promoters and measured their activation by the candidate effectors, expressed under the control of their respective native promoters, using a transient-cooperativity assay in which the candidate effectors were subtracted individually from a transfection mixture containing all five loci. The combination of UL36-38, UL112-113, IRS1, or TRS1 and the major immediate early region produced as much as 100-fold-higher expression than the major immediate early region alone; omitting any one of these four loci from complementing mixtures produced a significant reduction in expression. In contrast, omitting UL84 had insignificant (less than twofold), promoterdependent effects on reporter activity, and these data do not implicate UL84 in regulating HCMV early-gene expression. Most of the effector interactions showed significant positive cooperativity, producing synergistic enhancement of expression. Similar responses to these effectors were observed for the each of the promoters controlling expression of replication fork proteins. However, subtracting UL112-113 had little if any effect on expression by the UL112-113 promoter or by the simian virus 40 promoter-enhancer under the same conditions. Several lines of evidence argue that the cooperative interactions observed in our transient-transfection assays are important to viral replication in permissive cells. Therefore, the data suggest a model in which coordinate expression of multiple essential replication proteins during permissive infection is vitally dependent upon the cooperative regulatory interactions of proteins encoded by multiple loci and thus have broad implications for our understanding of HCMV biology.
The human cytomegalovirus (HCMV) DNA polymerase gene (UL54; also called pol) is a prototypical early gene in that expression is mandatory for viral DNA replication. Recently, we have identified the major regulatory element in the UL54 promoter responsive to the major immediate early (MIE) proteins (UL122 and UL123) (J. A. Kerry, M. A. Priddy, and R. M. Stenberg, J. Virol. 68:4167-4176, 1994). Mutation of this element, inverted repeat sequence 1 (IR1), abrogates binding of cellular proteins to the UL54 promoter and reduces promoter activity in response to viral proteins in transient-transfection assays. To extend our studies on the UL54 promoter, we aimed to examine the role of IR1 in UL54 regulation throughout the course of infection. These studies show that viral proteins in addition to the MIE proteins can activate the UL54 promoter. Proteins from UL112-113 and IRS1/TRS1, recently identified as essential loci for transient complementation of HCMV oriLyt-dependent DNA replication, were found to function as transactivators of the UL54 promoter in association with MIE proteins. UL112-113 enhanced UL54 promoter activation by MIE proteins three-to fourfold. Constitutive expression of UL112-113 demonstrated that the MIE protein dependence of UL112-113 transactivational activity was not related to activation of cognate promoter sequences, suggesting that UL112-113 proteins function in cooperation with the MIE proteins. Mutation of IR1 was found to abrogate stimulation of the UL54 promoter by UL112-113, suggesting that this element is also involved in UL112-113 stimulatory activity. These results demonstrate that additional viral proteins influence UL54 promoter expression in transient-transfection assays via the IR1 element. To confirm the biological relevance of IR1 in regulating UL54 promoter activity during viral infection, a recombinant virus construct containing the UL54 promoter with a mutated IR1 element regulating expression of the chloramphenicol acetyltransferase (CAT) reporter gene (RVIRmCAT) was generated. Analysis of RVIRmCAT revealed that mutation of IR1 dramatically reduces UL54 promoter activity at early times after infection. However, at late times after infection CAT expression by RVIRmCAT, as assessed by RNA and protein levels, was approximately equivalent to expression by wild-type RVpolCAT. These data demonstrate IR1-independent regulation of the UL54 promoter at late times after infection. Together these results show that multiple regulatory events affect UL54 promoter expression during the course of infection.
Transient complementation of human cytomegalovirus (HCMV) oriLyt DNA replication in permissive human diploid cells expressing replication genes under native promoters requires its UL36-38 gene products. Two of the immediate early (IE) proteins encoded by this locus, pUL37x1 and, to a lesser extent, gpUL37, activated expression of HCMV early gene promoter constructions. The other IE protein encoded by the UL36-38 locus, pUL36, and the early product, pUL38, did not transactivate the HCMV early promoter constructions under similar conditions. The acidic domain, common to both pUL37x1 and gpUL37, is required for activation of HCMV early promoter constructions. Conversely, gpUL37 sequences downstream of amino acid 199 are not required for transactivation of viral early promoters. Taken together, these results suggest that the requirement for UL36-38 products for HCMV DNA replication results, at least in part, from the requirement of the transactivation of HCMV early DNA replication promoters by pUL37x1 and, to a lesser extent, by gpUL37 and that the acidic domain is critical for this activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.