In the F2 generation, nonviability in air and the lack of chloroplast glutamine synthetase co-segregated, in both the lines tested. These two lines and four others proved to be allelic, we designate them gin 2a-f. The characteristics of these mutants conclusively demonstrate the major role of chloroplast glutamine synthetase in photorespiration and its associated nitrogen recycling.
Five mutant lines of barley (Hordeum vulgare L.), which are only able to grow at elevated levels of CO2, contain less than 5% of the wild-type activity of ferredoxin-dependent glutamate synthase (EC 1.4.7.1). Two of these lines (RPr 82/1 and RPr 82/9) have been studied in detail. Leaves and roots of both lines contain normal activities of NADH-dependent glutamate synthase (EC 1.4.1.14) and the other enzymes of ammonia assimilation. Under conditions that minimise photorespiration, both mutants fix CO2 at normal rates; on transfer to air, the rates drop rapidly to 15% of the wild-type. Incorporation of (14)CO2 into sugar phosphates and glycollate is increased under such conditions, whilst incorporation of radioactivity into serine, glycine, glycerate and sucrose is decreased; continuous exposure to air leads to an accumulation of (14)C in malate. The concentrations of malate, glutamine, asparagine and ammonia are all high in air, whilst aspartate, alanine, glutamate, glycine and serine are low, by comparison with the wild-type parent line (cv. Maris Mink), under the same conditions. The metabolism of [(14)C]glutamate and [(14)C]glutamine by leaves of the mutants indicates a very much reduced ability to convert glutamine to glutamate. Genetic analysis has shown that the mutation in RPr 82/9 segregates as a single recessive nuclear gene.
A mutant line of barley, R(othamsted)-Pr 79/4, has been isolated which grows poorly in natural air, but normally in air enriched to 0.2% CO2. Analysis of the products of (14)CO2 fixation showed that there was no major block in photosynthetic or photorespiratory carbon metabolism in the mutant and that rates of CO2 fixation were only slightly lower than those measured in the wild type (c.v. Maris Mink). Leaves of the mutant line contained only 10% of the catalase (EC 1.11.1.6) activity found in the wild type; and the two major bands of catalase activity detected after starch-gel electrophoresis of extracts of normal leaves were missing from similar extracts of RPr 79/4. Peroxisomes isolated from mutant leaves contained negligible catalase activity, but normal levels of other enzymes involved in photorespiration. Genetic analysis has shown that the mutation is recessive and that both air-sensitivity and catalase-deficiency segregate together in F2 plants derived from a cross between the mutant and the cultivar Golden Promise. [1-(14)C]Glycollate was not converted to (14)CO2 faster in the mutant leaves than in the normal leaves. Thus there was no evidence that photorespiratory CO2 may be obtained by the chemical action of H2O2 on glyoxylate or hydroxypyruvate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.