International audienceThis work presents numerical simulations aimed at optimizing the design of polymer flat plate solar collectors. Solar collectors' absorbers are usually made of copper or aluminum and, although they offer good performance, they are consequently expensive. In comparison, using polymer can improve solar collectors economic competitiveness. In this paper, we propose a numerical study of a new design for a solar collector to assess the influence of the design parameters (air gap thickness, collector's length) and of the operating conditions (mass flow rate, incident solar radiation, inlet temperature) on efficiency. This work outlines the main trends concerning the leading parameters impacting the polymer flat plate solar collector's efficiency. (C) 2012 Elsevier Ltd. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.