Global food production must increase by 50% to meet the projected demand of the world's population by 2050. Meeting this difficult challenge will be made even harder if climate change melts portions of the Himalayan glaciers to affect 25% of world cereal production in Asia by influencing water availability. Pest and disease management has played its role in doubling food production in the last 40 years, but pathogens still claim 10-16% of the global harvest. We consider the effect of climate change on the many complex biological interactions affecting pests and pathogen impacts and how they might be manipulated to mitigate these effects. Integrated solutions and international co-ordination in their implementation are considered essential. Providing a background on key constraints to food security, this overview uses fusarium head blight as a case study to illustrate key influences of climate change on production and quality of wheat, outlines key links between plant diseases, climate change and food security, and highlights key disease management issues to be addressed in improving food security in a changing climate.
While many studies have demonstrated the sensitivities of plants and of crop yield to a changing climate, a major challenge for the agricultural research community is to relate these findings to the broader societal concern with food security. This paper reviews the direct effects of climate on both crop growth and yield and on plant pests and pathogens and the interactions that may occur between crops, pests, and pathogens under changed climate. Finally, we consider the contribution that better understanding of the roles of pests and pathogens in crop production systems might make to enhanced food security. Evidence for the measured climate change on crops and their associated pests and pathogens is starting to be documented. Globally atmospheric [CO(2)] has increased, and in northern latitudes mean temperature at many locations has increased by about 1.0-1.4 degrees C with accompanying changes in pest and pathogen incidence and to farming practices. Many pests and pathogens exhibit considerable capacity for generating, recombining, and selecting fit combinations of variants in key pathogenicity, fitness, and aggressiveness traits that there is little doubt that any new opportunities resulting from climate change will be exploited by them. However, the interactions between crops and pests and pathogens are complex and poorly understood in the context of climate change. More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.
Plants can be induced to develop enhanced resistance to pathogen infection by treatment with a variety of abiotic and biotic inducers. Biotic inducers include infection by necrotizing pathogens and plant-growth-promoting rhizobacteria, and treatment with nonpathogens or cell wall fragments. Abiotic inducers include chemicals which act at various points in the signaling pathways involved in disease resistance, as well as water stress, heat shock, and pH stress. Resistance induced by these agents (resistance elicitors) is broad spectrum and long lasting, but rarely provides complete control of infection, with many resistance elicitors providing between 20 and 85% disease control. There also are many reports of resistance elicitors providing no significant disease control. In the field, expression of induced resistance is likely to be influenced by the environment, genotype, and crop nutrition. Unfortunately, little information is available on the influence of these factors on expression of induced resistance. In order to maximize the efficacy of resistance elicitors, a greater understanding of these interactions is required. It also will be important to determine how induced resistance can best fit into disease control strategies because they are not, and should not be, deployed simply as "safe fungicides". This, in turn, will require information on the interaction of resistance elicitors with crop management practices such as appropriate-dose fungicide use.
Barley is cultivated both in highly productive agricultural systems and also in marginal and subsistence environments. Its distribution is worldwide and is of considerable economic importance for animal feed and alcohol production. The overall importance of barley as a human food is minor but there is much potential for new uses exploiting the health benefits of whole grain and betaglucans. The barley supply chains are complex and show added value at many stages. Germplasm resources for barley are considerable, with much potential for exploitation of its biodiversity available through the use of recently developed genomic and breeding tools. Consequently, substantial gains in crucial sustainability characteristics should be achievable in the future, together with increased understanding of the physiological basis of many agronomic traits, particularly water and nutrient use efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.