Two inhibitors of the biosynthesis of aspergillin, the black spore pigment of Aspergillus niger, have been investigated. 2,4-Dithiopyrimidine exerted its inhibitory effect by intracellularly chelating cupric ion required for normal pigmentation. Dimethylsulfoxide prevented the synthesis of certain phenolic precursors of the native pigment. Partial purification and characterization of pigments from mature cultures revealed the presence of at least three components: (i) a high-molecular-weight (-20,000) native pigment fraction in untreated mold cultures, (ii) a lower-molecular-weight (-5,000) melanin pigment found in both types of inhibited cultures, and (iii) a low-molecular-weight (368) green pigment found only in the 2,4-dithiopyrimidine-inhibited cultures and proposed to be a pentacyclic quinonoid derivative. A pathway for aspergillin biosynthesis is suggested based on these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.