This study presents the influence of nanoclays and glass fibers on the shrinkage and ejection forces of polypropylene-based composites for tubular parts produced by injection molding. An instrumented mold was used to measure cavity pressure, surface temperature and ejection forces in the tubular parts during the injection cycle. The materials used for the study were polypropylene homopolymer Domolen 1100L, nanoclays for polyolefin nanocomposites (P-802 nanoMax, used in percentages of 2%, 6%, and 10%) and reinforced polypropylene homopolymer with a content of 10% and 30% glass fiber (Domolen P1-013-V10-N and Domolen P1-102-V30-N, respectively). Part shrinkage was measured 48 h after production. The results show that the incorporation of nanoclays reduces shrinkage and ejection forces while glass fibers decrease shrinkage and increase ejection forces due to an increase in elastic modulus. Nanoclays decrease the ejection forces when compared to glass fibers and pure PP. The effects of nanoclays are less pronounced than those of glass fibers. Moldings produced with different materials were also analyzed to assess the effect of mold temperature on the ejection forces. Shrinkage rises slightly by increasing the mold temperature while the ejection force decreases. POLYM. ENG. SCI.,[58][59][60][61][62]
In this study the influence of nanoclay and glass fibre in the shrinkage and ejection forces in polypropylene matrix in tubular parts moulded by injection moulding were analysed. An instrumented mould was used to measure the part surface temperature and ejection forces in tubular parts. The materials used were a polypropylene homopolymer Domolen 1100L nanoclay for polyolefin nanocomposites P-802 Nanomax in percentages of 2%, 6% and 10% and a polypropylene homopolymer with content of 10% of glass fibre Domolen P1-013-V10-N and 30% of glass fibre Domolen P1-102-V30-N with 2% of nanoclay. The shrinkage and ejection forces were analysed. The results show that the incorporation of nanoclays decreases the shrinkage and ejection forces whereas glass fibre decreases the shrinkage and increase ejection forces due to the increase of the elastic modulus. The nanoclays decrease the ejection force when compared with glass fibre and pure PP. The effects of nanoclays are less pronounced than those of glass fibre. The effect of the mould temperatures on the ejection forces in the mouldings produced with the mentioned materials were also analysed. The ejection force decreases with the increase of the temperature of the mould.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.