The number of meniscus-related operations continues to rise due to the ageing and more active population.
PurposeTo evaluate the functional biomechanical performance of a novel anatomically shaped, polycarbonate urethane total meniscus implant.MethodsFive human cadaveric knees were flexed between 0° and 90° under compressive loads mimicking a squat movement. Anteroposterior (AP) laxity tests were performed in 30° and 90° flexion. Meniscal kinematics and knee laxity were quantified using roentgen stereophotogrammetric analysis. Tibial cartilage contact mechanics were determined in 90° flexion. Measurements were repeated for the native medial meniscus, the implant, after total medial meniscectomy and allograft transplantation.ResultsThe implant and allograft displayed increased posterior and medial displacements compared to the native meniscus, yet no differences were found between the implant and allograft. Meniscal condition did not affect rotational laxity. Compared to the native joint, AP laxity for the implant was increased in 30° flexion, but not in 90°. The implant reduced the mean contact pressure compared to meniscectomy but could not restore contact pressures to native meniscus levels. Compared to the native meniscus, the implant significantly increased the peak pressure, while the contact area was reduced. Contact mechanics of the implant and allograft were never statistically different.ConclusionsBiomechanical performance was similar for the implant and allograft. However, both meniscal replacements could not restore outcomes to native meniscus levels or sufficiently improve outcomes after meniscectomy. This was presumably caused by the mobility allowed by the suture-only horn fixation. The similarity of implant and allograft performance suggests that the novel implant has the biomechanical potential to serve as an alternative to meniscal allograft transplantation.
PurposeThe objective of this study was to investigate the effect of a medial open-wedge osteotomy (OWO) and the release of the superficial medial collateral ligament (MCL) on the tibiofemoral cartilage pressure, the MCL tension and the valgus laxity of the knee.MethodsSeven fresh-frozen, human cadaveric knees were used. Medial and lateral mean contact pressure (CP), peak contact pressure (peakCP), and contact area (CA) were measured using a pressure-sensitive film (I-Scan; Tekscan, Boston, MA). The MCL tension was measured using a custom-made device. These measurements were continuously recorded for 5 min after an OWO of 10°. After the osteotomy, the valgus laxity was measured with a handheld Newtonmeter. For one knee, the measurements were continued for 24 h. At the end, a complete release of the superficial MCL was performed and the measurements were repeated at 10°.ResultsThere was relaxation of the MCL after the osteotomy; the tension dropped in 5 min with 10.7% (mean difference 20.5 N (95% CI 16.1–24.9)), and in 24 h, the tension decreased by 24.2% (absolute difference 38.8 N) (one knee). After the osteotomy, the mean CP, peakCP and CA increased in the medial compartment (absolute difference 0.17 MPa (95% CI 0.14–0.20), 0.27 MPa (95% CI 0.24–0.30), 132.9mm2 (95% CI 67.7–198.2), respectively), and decreased in the lateral compartment (absolute difference 0.02 MPa (95% CI 0.03 –0.01), 0.08 MPa (95% CI 0.11 – 0.04), 47.0 mm2 (95% CI −105.8 to 11.8), respectively). Only after a release of the superficial MCL, the mean CP, peak CP and CA significantly decreased in the medial compartment (absolute difference 0.17, 0.27 MPa, 119.8 mm2, respectively), and increased in the lateral compartment (absolute difference 0.02, 0.11 MPa, 52.4 mm2, respectively). After the release of the superficial MCL, a mean increase of 7.9° [mean difference − 0.1° (95% CI −1.9 to 1.6)] of the valgus laxity was found.ConclusionsA release of the superficial MCL helps achieve the goal of reducing medial cartilage pressure in an OWO. There was considerable relaxation of the MCL after an OWO that resulted in a decrease of the mean CP in the medial and lateral compartments of the knee over time. However, cartilage pressure shifted from the medial to the lateral compartment only after release of the superficial MCL. The release of the superficial MCL caused a significant increase in the valgus laxity, which could influence stability after an OWO.Level of evidenceI.
PurposeSince the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU), total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on the implant location in the joint, geometrical integrity of the implant and the effect of the implant on synovial membrane and articular cartilage histopathological condition.MethodsThe right medial meniscus of seven Saanen goats was replaced by the implant. Sham surgery (transection of the MCL, arthrotomy and MCL suturing) was performed in six animals. The contralateral knee joints of both groups served as control groups. After three months follow-up the following aspects of implant performance were evaluated: implant position, implant deformation and the histopathological condition of the synovium and cartilage.ResultsImplant geometry was well maintained during the three month implantation period. No signs of PCU wear were found and the implant did not induce an inflammatory response in the knee joint. In all animals, implant fixation was compromised due to suture breakage, wear or elongation, likely causing the increase in extrusion observed in the implant group. Both the femoral cartilage and tibial cartilage in direct contact with the implant showed increased damage compared to the sham and sham-control groups.ConclusionThis study demonstrates that the novel, anatomically shaped PCU total meniscal replacement is biocompatible and resistant to three months of physiological loading. Failure of the fixation sutures may have increased implant mobility, which probably induced implant extrusion and potentially stimulated cartilage degeneration. Evidently, redesigning the fixation method is necessary. Future animal studies should evaluate the improved fixation method and compare implant performance to current treatment standards, such as allografts.
Since meniscal geometry affects the cartilage contact pressures, it is essential to carefully define the geometry of the synthetic meniscal implant that we developed. Recently, six independent modes of size- and shape-related geometry variation were identified through 3D statistical shape modeling (SSM) of the medial meniscus. However, this model did not provide information on the functional importance of these geometry characteristics. Therefore, in this study finite element simulations were performed to determine the influence of anatomically-based meniscal implant size and shape variations on knee cartilage contact pressures. Finite element simulations of the knee joint were performed for a total medial meniscectomy, an allograft, the average implant geometry, six implant sizes and ten shape variations. The geometries of the allograft and all implant variations were based on the meniscus SSM. Cartilage contact pressures and implant tensile strains were evaluated in full extension under 1200N of axial compression. The average implant induced cartilage peak pressures intermediate between the allograft and meniscectomy and also reduced the cartilage area subjected to pressures >5MPa compared to the meniscectomy. The smaller implant sizes resulted in lower cartilage peak pressures and compressive strains than the allograft, yet high implant tensile strains were observed. Shape modes 2, 3 and 6 affected the cartilage contact stresses but to a lesser extent than the size variations. Shape modes 4 and 5 did not result in changes of the cartilage stress levels. The present study indicates that cartilage contact mechanics are more sensitive to implant size than to implant shape. Down-sizing the implant resulted in more favorable contact mechanics, but caused excessive material strains. Further evaluations are necessary to balance cartilage contact pressures and material strains to ensure cartilage protection and longevity of the implant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.