This work presents a systematic study on a commercial high electron mobility transistor based on the AlGaN / GaN heterostructure (GaN HEMT). The study evaluates its robustness to different radiation doses, more specifically, its robustness to the effects of the total ionizing dose (TID) irradiated from an X-ray source with an effective energy of 10 keV. The accumulated dose varies from up to 350 krad (Si). Therefore, for this purpose, three tests were performed on the commercial transistor, GS61008T. First, the acquisition of parameters: threshold voltage (VTH), Transconductance (gm), off current (Ioff) and sub-threshold slope (S) before, during and after exposure to radiation. Then, the switching test, where the rise (tr) and fall (tf) times were aquired, pre and post irradiation, in two diffrent frequency, 100 Hz and 100 kHz. Moreover, the temperature test, where the sample varied from 223 K (-50ºC) to 348 K (75 ºC) to evaluate its robustness for the temperature variation after having accumulated 350 krad (Si). In addition, for a better understanding of the effects of TID on the sample, all tests were performed in two different polarization modes. The on mode (VGS = 3 V and VDS = 0 V), and the off mode (VGS = VDS = 0 V). The characteristic electrical parameters of the transistor were extracted using the characteristic curves IDxVD, IDxVG and IDxt. Curves, that were obtained using National Instrument’s PXI, with programmable sources and an X-ray diffractometer. The results showed that for the devices analyzed, for this GaN COTS the effects resulting from ionizing radiation (TID), with doses up to 350 krad (Si), are minimal, and also showed a quick and effective recovery of their electrical characteristics after annealing at room temperature, especially when irradiated polarized at on mode. Therefore, indicating that they are good candidates for use in harsh environments, as is the case of aerospace environments, particle accelerators environments and nuclear reactors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.