The random sequential adsorption (RSA) model has served as a paradigm for diverse phenomena in physical chemistry, as well as in other areas such as biology, ecology, and sociology. In the present work, we survey aspects of the RSA model with emphasis on the approach to and properties of jammed states obtained for large times in continuum deposition versus that on lattice substrates, and on pre-patterned surfaces. The latter model has been of recent interest in the context of efforts to use pre-patterning as a tool to improve selfassembly in micro-and nanoscale surface structure engineering.
Using scanning tunneling microscopy, we study the post-deposition coarsening of distributions of large, twodimensional Ag islands on a perfect Ag(100) surface at 295 K. The coarsening process is dominated by diffusion, and subsequent collision and coalescence of these islands. To obtain a comprehensive characterization of the coarsening kinetics, we perform tailored families of experiments, systematically varying the initial value of the average island size by adjusting the amount of Ag deposited (up to 0.25 ML). Results unambiguously indicate a strong decrease in island diffusivity with increasing island size. An estimate of the size scaling exponent follows from a mean-field Smoluchowski rate equation analysis of experimental data. These rate equations also predict a rapid depletion in the initial population of smaller islands. This leads to narrowing of the size distribution scaling function from its initial form, which is determined by the process of island nucleation and growth during deposition. However, for later times, a steady increase in the width of this scaling function is predicted, consistent with observed behavior. Finally, we examine the evolution of Ag adlayers on a strained Ag(100) surface, and find significantly enhanced rates for island diffusion and coarsening. KeywordsInstitute of Physical Research and Technology, scanning tunnelling microsopy, nucleation, adsorbed layers, silver, deposition, surface properties, islands, roughness, adsorbents, diffusion, scanning electron microscopy, thin films Disciplines Mathematics | Physical Chemistry CommentsThe following article appeared in The Journal of Chemical Physics 111, no. 11 (1999) Using scanning tunneling microscopy, we study the post-deposition coarsening of distributions of large, two-dimensional Ag islands on a perfect Ag͑100͒ surface at 295 K. The coarsening process is dominated by diffusion, and subsequent collision and coalescence of these islands. To obtain a comprehensive characterization of the coarsening kinetics, we perform tailored families of experiments, systematically varying the initial value of the average island size by adjusting the amount of Ag deposited ͑up to 0.25 ML͒. Results unambiguously indicate a strong decrease in island diffusivity with increasing island size. An estimate of the size scaling exponent follows from a mean-field Smoluchowski rate equation analysis of experimental data. These rate equations also predict a rapid depletion in the initial population of smaller islands. This leads to narrowing of the size distribution scaling function from its initial form, which is determined by the process of island nucleation and growth during deposition. However, for later times, a steady increase in the width of this scaling function is predicted, consistent with observed behavior. Finally, we examine the evolution of Ag adlayers on a strained Ag͑100͒ surface, and find significantly enhanced rates for island diffusion and coarsening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.